

Getting Started Guide

Your Guide to Getting
Started with IVI Drivers

Revision 1.3

© Copyright IVI Foundation, 2015
All rights reserved

The IVI Foundation has full copyright privileges of the IVI Getting Started Guide.
For persons wishing to reference portions of the guide in their own written work,
standard copyright protection and usage applies. This includes providing a
reference to the guide within the written work. Likewise, it needs to be apparent
what content was taken from the guide. A recommended method in which to do
this is by using a different font in italics to signify the copyrighted material.

1 	

• • •
Introduction
• • •

Purpose

Welcome to IVI Getting Started Guide. This guide introduces key concepts about
IVI drivers and shows you how to create a short program to perform a
measurement. The guide also provides a brief introduction to several advanced
topics.

IVI Getting Started Guide is intended for individuals who write and run programs
to control test-and-measurement instruments. As you develop test programs, you
face decisions about how you communicate with the instruments. Some of your
choices include Direct I/O, VXIplug&play drivers, or IVI drivers. If you are new to
using IVI drivers or just want a quick refresher on how to get started, IVI Getting
Started Guide can help.

IVI Getting Started Guide shows you that IVI drivers can be straightforward, easy-
to-use tools. IVI drivers provide a number of advantages that can save time and
money during development, while improving performance as well. Whether you are
starting a new program or making improvements to an existing one, you should
consider the use of IVI drivers to develop your test programs.

So consider this the “hello, instrument” guide for IVI drivers. If you recall, the “hello
world” program, which originally appeared in Programming in C: A Tutorial, simply
prints out “hello, world.” The “hello, instrument” program performs a simple
measurement on a simulated instrument and returns the result. We think you’ll find
that far more useful.

Why Use an Instrument Driver?
To understand the benefits of IVI drivers, we need to start by defining instrument
drivers in general and describing why they are useful. An instrument driver is a set
of software routines that controls a programmable instrument. Each routine
corresponds to a programmatic operation, such as configuring, writing to, reading
from, and triggering the instrument. Instrument drivers simplify instrument control
and reduce test program development time by eliminating the need to learn the
programming protocol for each instrument.

Starting in the 1970s, programmers used device-dependent commands for
computer control of instruments. But lack of standardization meant even two digital
multimeters from the same manufacturer might not use the same commands. In
the early 1990s a group of instrument manufacturers developed Standard
Commands for Programmable Instrumentation (SCPI). This defined set of
commands for controlling instruments uses ASCII characters, providing some

2 	

basic standardization and consistency to the commands used to control
instruments. For example, when you want to measure a DC voltage, the
standard SCPI command is “MEASURE:VOLTAGE:DC?”.

In 1993, the VXIplug&play Systems Alliance created specifications for instrument
drivers called VXIplug&play drivers. Unlike SCPI, VXIplug&play drivers do not
specify how to control specific instruments; instead, they specify some common
aspects of an instrument driver. By using a driver, you can access the instrument
by calling a subroutine in your programming language instead of having to format
and send an ASCII string as you do with SCPI. With ASCII, you have to create and
send the instrument the syntax “MEASURE:VOLTAGE:DC?”, then read back a
string, and build it into a variable. With a driver you can merely call a function called
MeasureDCVoltage() and pass it a variable to return the measured voltage.

Although you still need to be syntactically correct in your calls to the instrument
driver, making calls to a subroutine in your programming language is less error
prone. If you have been programming to instruments without a driver, then you are
probably all too familiar with hunting around the programming guide to find the right
SCPI command and exact syntax. You also have to deal with an I/O library to
format and send the strings, and then build the response string into a variable.

Why IVI?

The VXIplug&play drivers do not provide a common programming interface. That
means programming a Keithley DMM using VXIplug&play still differs from
programming a Keysight DMM. For example, the instrument driver interface for
one may be ke2000_read while another may be ag34401_get or something
even farther afield. Without consistency across instruments manufactured by
different vendors, many programmers still spent a lot of time learning each
individual driver.

To carry VXIplug&play drivers a step (or two) further, in 1998 a group of end users,
instrument vendors, software vendors, system suppliers, and system integrators
joined together to form a consortium called the Interchangeable Virtual Instruments
(IVI) Foundation. If you look at the membership, it’s clear that many of the
foundation members are competitors. But all agreed on the need to promote
specifications for programming test instruments that provide better performance,
reduce the cost of program development and maintenance, and simplify
interchangeability.

For example, for any IVI driver developed for a DMM, the measurement command
is IviDmmMeasurement.Read, regardless of the vendor. Once you learn how to
program the commands specified by IVI for the instrument class, you can use any
vendor’s instrument and not need to relearn the commands. Also commands that
are common to all drivers, such as Initialize and Close, are identical regardless of
the type of instrument. This commonality lets you spend less time browsing
through the help files in order to program an instrument, leaving more time to
get your job done.

3 	

That was the motivation behind the development of IVI drivers.The IVI
specifications enable drivers with a consistent and high standard of quality,
usability, and completeness. The specifications define an open driver architecture,
a set of instrument classes, and shared software components. Together these
provide consistency and ease of use, as well as the crucial elements needed for
the advanced features IVI drivers support: instrument simulation, automatic range
checking, state caching, and interchangeability.

The IVI Foundation has created IVI class specifications that define the capabilities
for drivers for the following thirteen instrument classes:

Class IVI Driver

Digital multimeter (DMM) IviDmm

Oscilloscope IviScope

Arbitrary waveform/function generator IviFgen

DC power supply

AC power supply

IviDCPwr

IviACPwr

Switch IviSwtch

Power meter IviPwrMeter

Spectrum analyzer IviSpecAn

RF signal generator

Upconverter

Downconverter

Digitizer

Counter/timer

IviRFSigGen

IviUpconverter

IviDownconverter

IviDigitizer

IviCounter

IVI Class Compliant drivers usually also include numerous functions that are
beyond the scope of the class definition. This may be because the capability is
not common to all instruments of the class or because the instrument offers
some control that is more refined than what the class defines.

4 	

IVI also defines custom drivers. Custom drivers are used for instruments that are
not members of a class. For example, there is not a class definition for network
analyzers, so a network analyzer driver must be a custom driver. Custom drivers
provide the same consistency and benefits described below for an IVI driver,
except interchangeability.

IVI drivers conform to and are documented according to the IVI specifications and
usually display the standard IVI logo.

Note: For more information on the types of IVI drivers, refer to Chapter 10,
Advanced Topics.

Why Use an IVI Driver?
Why choose IVI drivers over other possibilities? Because IVI drivers can increase
performance and flexibility for more intricate test applications. Here are a few of the
benefits:

Consistency – IVI drivers all follow a common model of how to control the
instrument. That saves you time when you need to use a new instrument.

Ease of use – IVI drivers feature enhanced ease of use in popular Application
Development Environments (ADEs). The APIs provide fast, intuitive access to
functions. IVI drivers use technology that naturally integrates in many different
software environments.

Quality – IVI drivers focus on common commands, desirable options, and
rigorous testing to ensure driver quality.

Simulation – IVI drivers allow code development and testing even when an
instrument is unavailable. That reduces the need for scarce hardware resources
and simplifies test of measurement applications. The example programs in this
document use this feature.

Range checking – IVI drivers ensure the parameters you use are within
appropriate ranges for an instrument.

State caching – IVI drivers keep track of an instrument’s status so that I/O is only
performed when necessary, preventing redundant configuration commands from
being sent. This can significantly improve test system performance.

5 	

Interchangeability – IVI drivers enable exchange of instruments with minimal
code changes, reducing the time and effort needed to integrate measurement
devices into new or existing systems. The IVI class specifications provide syntactic
interchangeability but may not provide behavioral interchangeability. In other
words, the program may run on two different instruments but the results may
not be the same due to differences in the way the instrument itself functions.

Flavors of IVI Drivers

To support all popular programming languages and development environments, IVI
drivers provide either an IVI-C or an IVI-COM (Component Object Model) API.
Driver developers may provide either or both interfaces, as well as wrapper
interfaces optimized for specific development environments.
Although the functionality is the same, IVI-C drivers are optimized for use in ANSI
C development environments; IVI-COM drivers are optimized for environments
that support the Component Object Model (COM) such as the .NET
programming environment. IVI-C drivers extend the VXIplug&play driver
specification and their usage is similar. IVI-COM drivers provide easy access to
instrument functionality through methods and properties.
The getting started examples communicate with the instruments using the
Virtual Instrument Software Architecture (VISA) I/O library, a widely used
standard library for communicating with instruments from a personal computer.
The VISA standard is also provided by the IVI Foundation.

Shared Components

To make it easier for you to combine drivers and other software from various
vendors, the IVI Foundation members have cooperated to provide common
software components, called IVI Shared Components. These components provide
services to drivers and driver clients that need to be common to all drivers. For
instance, the IVI Configuration Server enables administration of system-wide
configuration.

Important! You must install the IVI Shared Components before an IVI driver
can be installed.
The IVI Shared Components can be downloaded from vendors’ web sites as well
as from the IVI Foundation Web site.

To download and install shared components from the IVI Foundation Web site:

1 Go to the IVI Foundation Web site at http://www.ivifoundation.org.
2 Locate Shared Components.
3 Choose the IVI Shared Components msi file for the Microsoft Windows Installer

package or the IVI Shared Components exe for the executable installer.

6 	

Download and Install IVI Drivers
After you’ve installed Shared Components, you’re ready to download and install an
IVI driver. For most ADEs, the steps to download and install an IVI driver are
identical. For the few that require a different process, the relevant chapter in IVI
Getting Started Guide provides the information you need.

IVI Drivers are available from your hardware or software vendor’s web site or by
linking to them from the IVI Foundation web site.

To see the list of drivers registered with the IVI Foundation, go to
http://www.ivifoundation.org.

Familiarizing Yourself with the Driver

Although the examples in IVI Getting Started Guide use a DMM driver, you will
likely employ a variety of IVI drivers to develop test programs. To jumpstart that
task, you’ll want to familiarize yourself quickly with drivers you haven’t used before.
Most ADEs provide a way to explore IVI drivers to learn their functionality. In each
chapter, where applicable, we add a note explaining how to view the available
functions. In addition, browsing an IVI driver’s help file often proves an excellent
way to learn its functionality.

Examples
As we noted above, each example chapter in IVI Getting Started Guide shows you how to use an
IVI driver to write and run a program that performs a simple measurement on a simulated
instrument and returns the result. The examples demonstrate common steps using IVI drivers.
Where practical, every example includes the steps listed below:
• Download and Install the IVI driver– covered in the Download and Install IVI Drivers

section above.
• Determine the VISA address string – Examples in Getting Started with IVI Drivers use the

simulate mode, so we chose the address string GPIB0::23::INSTR, often shown as
GPIB::23. If you need to determine the VISA address string for your instrument and the ADE
does not provide it automatically, use an IO application, such as National Instruments
Measurement and Automation Explorer (MAX) or Keysight Connection Expert.

• Reference the driver or load driver files – For the examples in this guide, the driver is the
IVI-COM/IVI-C Version 1.2.2.0 for 34401A, October 2008 (from Keysight
Technologies) … or the Keysight 34401A IVI-C driver, Version 4.5, January 2015
(from National Instruments).

• Create an instance of the driver in ADEs that use COM – For the examples in the IVI guides,
the driver is the Agilent 34401A (IVI-COM) or HP 34401 (IVI-C).

• Write the program. The programs in this series all perform the following steps:
• Initialize the instrument – Initialize is required when using any IVI driver. Initialize

establishes a communication link with the instrument and must be called before the
program can do anything with the instrument. The examples set reset to true, ID
query to false, and simulate to true.

7 	

Setting reset to true tells the driver to initially reset the instrument. Setting the ID
query to false prevents the driver from verifying that the connected instrument is
the one the driver was written for. Finally, setting simulate to true tells the driver
that it should not attempt to connect to a physical instrument, but use a simulation
of the instrument.

• Configure the instrument – The examples set a range of 1.5 volts and a resolution of
0.001 volts (1 millivolt).

• Access an instrument property – The examples set the trigger delay to 0.01
seconds.

• Set the reading timeout – The	examples	set the reading timeout to 1000
milliseconds (1 second).

• Take a reading
• Close the instrument – This step is required when using any IVI driver, unless the

ADE explicitly does not require it. We close the session to free resources.
Important! Close may be the most commonly missed step when using an IVI driver. Failing
to do this could mean that system resources are not freed up and your program may
behave unexpectedly on subsequent executions.

• Check the driver for any errors.
• Display the reading.

Note: Examples that use a console application do not show the display.

Now that you understand the logic behind IVI drivers, let’s see how to get started.

8 	

• • •
Using IVI with Visual C++
• • •

The Environment

Microsoft Visual C++ is a software development environment for the C++
programming language and is available as part of Microsoft Visual Studio.
Visual C++ allows you to create, debug, and execute conventional applications
as well as applications that target the .NET Framework.

Example Requirements
• Visual C++
• Microsoft Visual Studio 2010
• IVI-COM: Agilent 34401A IVI-COM, Version 1.2.2.0, October 2008 (from

Agilent Technologies); or
• Keysight 34401A IVI-C driver, Version 4.5, January 2015 (from

National Instruments)
• Keysight IO Libraries Suite 16.1 or greater
• National Instruments IVI Compliance Package version 4.0 or later

Download and Install the Driver

If you have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it.

Since Visual C++ supports both IVI-COM and IVI-C drivers, this example is written
two ways, first to show how to use an IVI-COM driver in Visual C++, and second to
show how to use an IVI-C driver in Visual C++.

Note: If you do not install the appropriate instrument driver, the project will not build
because the referenced files are not included in the program. If you need to
download and install a driver, you do not need to exit Visual Studio. Install the driver
and continue with your program.

Using IVI-COM in C++

The following sections show how to get started with an IVI-COM driver in Visual
C++

Create a New Project and Import the Driver Type Libraries

To use an IVI Driver in a Visual C++ program, you	must	provide	the	path	to	the	
type	libraries	it	uses.

9 	

1 Launch	Visual	Studio	2010	and	create	a	Visual	C++	Win32	Console	Application	
with	the	name	“IviDemo”. Use	the	default	settings.	
Note: The	program	already	includes	some	required	code,	including	the	
standard	header	file:	
#include "stdafx.h"

2 In Solution Explorer, right click on the “IviDemo” project node and click on
“Properties”.This will open the “IviDemo Property Pages” dialog.	

3 In the tree view on the left of the dialog, expand “Configuration Properties”,
then click on “VC++ Directories”.

4 Locate the “Include Directories” row in the right hand pane and click on the
drop down icon in the column that contains the directory paths. Click on
“<Edit…>”.

5 Add the following two entries to your path.
The first entry will point to the default directory for IVI drivers. On 32-bit
Windows, use:

“C:\Program Files\IVI Foundation\IVI\Bin”

On	64-bit	Windows,	use:	

“C:\Program Files (x86)\IVI Foundation\IVI\Bin”

The second entry points to the VISA DLL that many drivers
require:

“$(VXIPNPPATH)VisaCom”

Note: The	second	entry	will	point	to	the	correct	VISA	COM	directory	regardless	
of	whether	you	are	operating	with	32-bit	or	64-bit	Windows.

6 Click	OK	twice	to	save	changes	and	exit	the	“IviDemo	Property	Pages”	dialog.

Import COM Type Libraries

COM type libraries must be imported before they can be accessed. To import
the type libraries, type the following statements following the header file
reference:

#import <IviDriverTypeLib.dll> no_namespace
#import <IviDmmTypeLib.dll> no_namespace
#import <GlobMgr.dll> no_namespace

 	

#import <Ag34401.dll> no_namespace

Note: The #import statements access the driver type libraries used by the
Agilent 34401 DMM. The no_namespace attribute allows the code to access the
interfaces in the type libraries from the global namespace.

At this point the Visual C++ editor may flag the #import statements as errors. To
fix the errors, select “Rebuild Solution” from the Build menu.

Initialize COM
1 Initialize the COM library, and check for errors. Add the following lines at the

beginning of the _tmain function (immediately before the return statement):

HRESULT hr = ::CoInitialize(NULL);

if (FAILED(hr)) exit(1);

2 To close the COM library before exiting, type the following line at the end of

your code, right before the return line:
::CoUninitialize();

Create an Instance of the Driver
To create an instance of the driver, type

{

IIviDmmPtr dmm(uuidof(Agilent34401));
}

Note: This creates a smart pointer that provides easy access to the COM object.

You are now ready to write the program to control the simulated instrument.

Initialize the Instrument
You can now write the main constructs for your program.

Below the smart pointer statement, type

dmm->Initialize("GPIB::23", false, true, "simulate=true");

Note: As soon as you type ->, Intellisense displays options
and helps ensure you use correct syntax and values.

Configure the Instrument

To set the range to 1.5 volts and resolution to 0.001 volts, type

dmm->Configure(IviDmmFunctionDCVolts, 1.5, 0.001);

11 	

Set the Trigger Delay
To set the trigger delay to 0.01 seconds, type

dmm->Trigger->Delay = 0.01;

Set the Reading Timeout/Display the Reading

Create	a	variable	to	represent	the	reading, make	a	reading	with	a	timeout	of	1	second	
(1000	milliseconds),	and	display	the	result	to	the	console:	

double reading = dmm->Measurement->Read(1000);

wprintf(L"Reading: %g\n", reading);

Error Checking

To catch errors in the code, activate error checking.

1 Surround the preceding statements with a try block. Add the following lines
before the call to the Initialize method:
try

{

2 Process errors in a catch block. Add the following lines after the call to the
wprintf method that follows the Read method:

}

catch (_com_error e)

{

wprintf(L"Error: %s", e.ErrorMessage());

}

Close the Session
Close	out	the	instance	of	the	driver	and	free	resources.	Add	the	following	line	
after	the	closing	bracket	of	the	catch	block:	
dmm->Close();

View the Results
Prompt the user to press any key to continue. Without these lines, the console
window would immediately close before the user could view the information
that was written to it. Add the following lines immediately before the return
statement:

printf("\nDone - Press any key to exit");

getchar();

12 	

Complete Source Code

The complete source code for the IviDemo.cpp file is shown below:

//	IviDemo.cpp	:	Defines	the	entry	point	for	the	console	
application.	
//	
#include "stdafx.h"

#import <IviDriverTypeLib.dll> no_namespace
#import <IviDmmTypeLib.dll> no_namespace
#import <GlobMgr.dll> no_namespace
#import <Ag34401.dll> no_namespace

int _tmain(int argc, _TCHAR* argv[])
{

HRESULT hr = ::CoInitialize(NULL);
if (FAILED(hr)) exit(1);

{
IIviDmmPtr dmm(uuidof(Agilent34401));

try
{

dmm->Initialize("GPIB::23", false, true,
"simulate=true");

dmm->Configure(IviDmmFunctionDCVolts, 1.5,
0.001);

}

dmm->Trigger->Delay = 0.01;
double reading = dmm->Measurement->Read(1000);
wprintf(L"Reading: %g\n", reading);

catch (_com_error e)
{

wprintf(L"Error: %s", e.ErrorMessage());
}
dmm->Close();

}

::CoUninitialize();

printf("\nDone - Press any key to exit");
getchar();

13 	

return 0;
}

Build and Run the Application
Build your application and run it to verify it works properly.

1 From the Build menu, select “Build”, and click “Rebuild Solution”.
2 From the Debug menu, select “StartDebugging”	to	run	the	application.	

	
Using IVI-C in Visual C++

The following sections show to get started with IVI-C in Visual C++.

Create a New Project and Import the Driver Type Libraries

To	use	an	IVI-C	Driver	in	a	Visual	C++	program,	you	must	provide	paths	to	the	
header	files	and	libraries	it	uses.

1 Launch Visual Studio 2010 and create a Visual C++ Win32 Console
Application with the name “IviDemo2”. Use the default settings.

Note:	The	program	already	includes	some	required	code,	including	the	
standard	header	file:	

#include “stdafx.h”
2 In Solution Explorer, right click on the “IviDemo2” project node and click on

“Properties”. This will open the “IviDemo2 Property Pages” dialog.
3 In the tree view on the left of the dialog, expand “Configuration Properties”,

then click on “VC++ Directories”.
4 Locate the “Include Directories” row in the right hand pane and click on the

drop down icon in the column that contains the directory paths. Click on
“<Edit…>”.

5 Add the following two entries to your path. The first entry will point to the default
directory for IVI drivers.

On	32-bit	Windows,	use:	
“C:\Program Files\IVI Foundation\IVI\Include”

On	64-bit	Windows,	use:	
“C:\Program Files (x86)\IVI Foundation\IVI\Include”

The	second	entry	points	to	the	VISA	DLL	that	many	drivers	require:	
“$(VXIPNPPATH)WinNT\include”

Note: The second entry will point to the correct VISA directory regardless of
whether you are operating with 32-bit or 64-bit Windows.

14 	

6 Locate the “Library Directories” row in the right hand pane and click on the drop
down icon in the column that contains the directory paths. Click on “<Edit…>”.

7 Add the following two entries to your path. The first entry will point to the default
directory for IVI drivers.

On 32-bit Windows, use:

“C:\Program Files\IVI Foundation\IVI\Lib\msc”

On 64-bit Windows, use:

“C:\Program Files (x86)\IVI Foundation\IVI\Lib\msc”
The second entry points to the VISA DLL that many drivers require:

“$(VXIPNPPATH)WinNT\lib\msc”
Note: The second entry will point to the correct VISA directory regardless of
whether you are operating with 32-bit or 64-bit Windows.

8 Next, expand “Linker” in the tree view on the left of the “IviDemo2 Property
Pages” dialog, then click on “Input”.

9 Locate the “Additional Dependencies” row in the right hand pane and click on
the drop down icon in the column that contains the list of .lib files. Click on
“<Edit…>”.

10 Add the following library file to the list:

“Ag34401.lib”

11 Click	OK	twice	to	save	changes	and	exit	the	“IviDemo2	Property	Pages”	dialog.	
	
Include Driver Header

To add the Ag34401 instrument driver header file to your program, type the
following statement following the existing header file reference:

#include “Ag34401.h”
Select	“Rebuild	Solution”	from	the	Build	menu.	

	

Declare Variables
Declare the program variables. Add the following lines at the beginning of the
_tmain function (immediately before the return statement):

ViSession session;
ViStatus error = VI_SUCCESS;
ViReal64 reading;

15 	

Define Error Checking
Next	define	error	checking	for	your	program.	First	you	will	define	a	macro	to	
catch	the	errors.	It	is	better	to	define	it	once	at	the	beginning	of	the	program	
that	to	add	the	logic	to	each	of	your	program	statements.	After	the	#include
statements,	type	the	following	lines:	

#ifndef checkErr
#define checkErr(fCall) \
if (error = (fCall), (error = (error < 0) ? error :
VI_SUCCESS)) \
{goto Error;} else error = error
#endif

Next	add	code	to	handle	any	errors	that	occur.	 Add	the	following	lines	
before	the	return	statement:	

Error:
if (error != VI_SUCCESS)
{

ViChar errStr[2048];
Ag34401_GetError (session, &error, 2048,

errStr);
printf ("Error!", errStr);

}

Note:	Including	error	handling	in	your	programs	is	good	practice.	This	code	
checks	for	errors	in	your	program.	

	
Initialize the Instrument

To initialize the instrument, add the following Initialize with Options function right
after the variable declarations you added in the previous section:

checkErr(Ag34401_InitWithOptions
("GPIB::23::INSTR",VI_FALSE, VI_TRUE,

"Simulate = 1",
&session));

This	initializes	the	instrument	with	the	following	parameters:	
• GPIB0::23::INSTR is the Resource Name (instrument at GPIB address 23).
• VI_FALSE indicates that an ID Query should not be performed by this function.
• VI_TRUE resets the device .
• Simulate=1 is the Options parameter that sets the driver to simulation mode.
• &session	assigns	the	Instrument	Handle	to	the	variable	“session”	defined	

above.Configure the Instrument

16 	

Configure the Instrument
To	set	the	range	to	1.5	volts	and	resolution	to	0.001	millivolts,	type:	

checkErr(Ag34401_ConfigureMeasurement (session,

AG34401_VAL_DC_VOLTS, 1.5, 0.001));

Set the Trigger and Trigger Delay
To set the trigger source to immediate and the trigger delay to 0.01 seconds, type:

checkErr(Ag34401_ConfigureTrigger (session,
AG34401_VAL_IMMEDIATE, 0.01));

Set the Reading Timeout/Display the Reading
To take a reading from the instrument and to set the reading timeout to 1 second
(1000 ms) type, and display the result using the printf function:

checkErr(Ag34401_Read (session, 1000, &reading);
printf ("Reading = %f", reading);

Note:	The	Read	function	takes	a	reading	from	the	instrument	and	assigns	the	
result	to	the	variable	“reading”	defined	above.	

	
Close the Session

To	close	out	the	instance	of	the	driver	and	free	resources,	add	the	following	
lines	immediately	before	the	return	statement:	

If (session)
Ag34401_Close(session);

View the Results
Prompt the user to press any key to continue. Without these lines, the console
window would immediately close before the user could view the information that
was written to it. Add the following lines immediately before the return statement:

printf("\nDone - Press any key to exit");
getchar();

Complete Source Code

The	complete	source	code	for	the	IviDemo2.cpp	file	is	shown	below:	
//	IviDemo2.cpp	:	Defines	the	entry	point	for	the	console	
application.	

17 	

//	
#include	"stdafx.h"	
#include	<Ag34401.h>	

	
#ifndef	checkErr	
#define	checkErr(fCall)	\	
if	(error	=	(fCall),	(error	=	(error	<	0)	?	error	:	
VI_SUCCESS))	\	
{goto	Error;}	else	error	=	error	
#endif	

	
int	_tmain(int	argc,	_TCHAR*	argv[])	
{	

ViSession	session;	
ViStatus	error	=	VI_SUCCESS;	
ViReal64	reading;	
checkErr(Ag34401_InitWithOptions	("GPIB::23::INSTR",	

VI_FALSE,	VI_TRUE,	
"Simulate=1",	&session));	

checkErr(Ag34401_ConfigureMeasurement	(session,	
AG34401_VAL_DC_VOLTS,	

1.5,	0.0001));	
checkErr(Ag34401_ConfigureTrigger	(session,	

AG34401_VAL_IMMEDIATE,	0.01));	
checkErr(Ag34401_Read	(session,	1000,	&reading));	
printf	("Reading	=	%f",	reading);	

	
Error:	

if	(error	!=	VI_SUCCESS)	
{	

ViChar	errStr[2048];	
Ag34401_GetError	(session,	&error,	2048,	errStr);	
printf	("Error!",	errStr);	

}	
	

if	(session)	
Ag34401_close	(session);	

	
printf("\nDone	-	Press	any	key	to	exit");	
getchar();	
return	0;	

18 	

}	
	
Build and Run the Application

Build	your	application	and	run	it	to	verify	it	works	properly.	
1 From the Build menu, select “Build”, and click “Rebuild Solution”.
2 From the Debug menu, select “StartDebugging” to run the application.

Microsoft® and Visual Studio® are registered trademarks of Microsoft Corporation
in the United States and/or other countries.

19 	

 	

• • •

Using IVI with Visual C# and
Visual Basic .NET
• • •

The Environment

C# and Visual Basic are object-oriented programming languages developed by
Microsoft. They enable programmers to quickly build a wide range of applications
for the Microsoft .NET platform. This chapter provides detailed instructions in C#
as well as the code for Visual Basic. NET. If you are using Visual Basic 6.0, we
recommend another guide in this series, Getting Started with IVI Drivers: Your
Guide to Using IVI with Visual Basic 6.

Note: One of the key advantages of using C# and Visual Basic in the Microsoft®
Visual Studio® Integrated Development Environment is IntelliSense™.
InstelliSense is a form of autocompletion for variable names and functions and a
convenient way to access parameter lists and ensure correct syntax. The feature
also enhances software development by reducing the amount of keyboard input
required.

Example Requirements
• Visual C#
• Microsoft Visual Studio 2010
• Agilent 34401A IVI-COM, Version 1.2.2.0, October 2008 (from Agilent

Technologies)
• Agilent IO Libraries Suite 16.1

Download and Install the Driver

If you have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it. You can also refer to Chapter 1, Download
and Install IVI Drivers, for instructions.

This example uses an IVI-COM driver. IVI-COM is the preferred driver for C#, but
IVI-C is also supported.

21 	

Create a New Project and Reference the Driver
Begin by creating a new project, and add a reference to the IVI Driver.

1 Launch Visual Studio and create a new Console Application in Visual C# by
selecting File -> New -> Project and selecting a Visual C# Console Application.
Note: When you select new, Visual Studio will create an empty program the
includes some necessary code, including using statements. Keep this required
code.

For the next steps you will need to ensure that the "Program.cs" editor window
is visible and the Solution Explorer is visible.

2 Select Project and click Add Reference. The Add Reference dialog appears.
3 Select the COM tab. All IVI drivers begin with IVI. Scroll to the IVI section and

select IVI Agilent 34401 (Agilent Technologies) 1.2 Type Library. Click OK.
Note: If you have not installed the IVI driver, it will not appear in this list. You must
close the Add Reference dialog, install the driver, and select Add Reference again
for the driver to appear.

22 	

Note: The program looks the same as it did before you added the reference, but
the driver is now available for use. To see the reference, select View and click
Solution Explorer. Solution Explorer appears and lists the reference.

23 	

Create an Instance of the Driver
To allow your program to access the driver without specifying the full path, type the
following line immediately below the other using statements:
using Agilent.Agilent34401.Interop;

Note: As soon as you type the A for Agilent, IntelliSense lists the valid inputs.

Congratulations! You may now write the program to control the simulated
instrument.

Note: To view the functions and parameters available in the instrument driver, right-
click the library in the References folder in Solution Explorer and select View in
Object Browser.

24 	

Initialize the Instrument
You can now write the main constructs for your program. Create a variable to
represent your instrument and set the Initialization parameters.

1 Type Agilent34401 dmm = new Agilent34401();
2 Type dmm.Initialize (“GPIB::23”, false, true,

“simulate=true”);

Note: IntelliSense helps ensure you use correct syntax and values.

25 	

To set the trigger delay to 0.01 seconds, type

dmm.Trigger.Delay = 0.01;

Set the Reading Timeout/Display the Reading

Create a variable to represent the reading and display the reading:

1 Type double reading;

To set the range to 1.5 volts and the resolution to 1 millivolt, type

26 	

2 To trigger the multimeter and take a reading with a timeout of 1 second, type
reading = dmm.Measurement.Read(1000);

3 Type Console.WriteLine("The measurement is {0}", reading);
4 Type Console.ReadLine();

Close the Session

To close out the instance of the driver to free resources, type

dmm.Close();

Your final program should contain the code below:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Agilent.Agilent34401.Interop;

namespace ConsoleApplication1

{

class Program

{

static void Main(string[] args)

{

Agilent34401 dmm = new Agilent34401();

dmm.Initialize("GPIB::23", false, true, "sim-

ulate=true");

dmm.DCVoltage.Configure(1.5, 0.001);

dmm.Trigger.Delay = 0.01;

double reading;

reading = dmm.Measurement.Read(1000);

Console.WriteLine("The measurement is {0}",

reading);

}

Console.ReadLine();

dmm.Close();

}
}

27 	

Build and Run the Application
Build your application and run it to verify it works properly.

1 From the Build menu, click the name of your Console Application.
2 From the Debug menu, click Start Debugging.

Tips

The code for a Visual Basic console application in Visual Studio 2010 is almost
identical to the C# application:

Option Explicit On

Imports Agilent.Agilent34401.Interop

Module Module1

Sub Main()

Dim dmm As New Agilent34401

dmm.Initialize("GPIB::23", False, True,
"simulate=true")

dmm.Function =
Agilent34401FunctionEnum.Agilent34401FunctionDCVolts

dmm.DCVoltage.Configure(1.5, 0.001)

dmm.Trigger.Delay = 0.01

Dim reading As New Double

reading = dmm.Measurement.Read(1000)

dmm.Close()

Console.WriteLine(“The reading is {0}”, reading)

Console.ReadLine()

End Sub

End Module

The main differences include the following:

• To use Visual Basic, select Visual Basic in Project Types.
• To enforce type checking, insert a line at the start of the code. Type

Option Explicit On

• This example also shows how to set an enumerated property. This property
assignment sets the DMM function to Voltage: Type
dmm.Function =
Agilent34401FunctionEnum.Agilent34401FunctionDCVolts

28 	

• To dimension a variable for the instrument and reading, use Dim dmm and Dim
reading.

Further Information

• Learn more about Visual C# at http://msdn.microsoft.com/vcsharp/.
• Learn more about Visual Basic at http://msdn.microsoft.com/vbasic/.

Microsoft® and Visual Studio® are registered trademarks of Microsoft Corporation
in the United States and/or other countries.

29 	

• • •
Using IVI with LabVIEWTM

• • •

The Environment

National Instruments LabVIEW is a graphical development environment for signal
acquisition, measurement analysis, and data presentation. LabVIEW provides the
flexibility of a programming language with less complexity than traditional
development tools.

Example Requirements
• LabVIEW 2011 or later
• IVI-C: Keysight 34401A IVI-C driver, Version 4.5, January 2015 (from

National Instruments)
• IVI-COM: Keysight 34401A IVI-COM/IVI-C driver, Version 1.2.5.0, April

2013 (from Keysight Technologies)
Note: These drivers may require an I/O library to be installed. Check the driver
vendor’s Web site for details.

Note: IVI-C driver requires the NI IVI Compliance Package to be installed.
Check National Instruments Web site for details.

Download and Install the Driver

If you have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it.

Since LabVIEW supports both IVI-C and IVI-COM drivers, this example is written
two ways, first to show how to use an IVI-C driver in LabVIEW, and second how to
use an IVI-COM driver in LabVIEW.

Using IVI-C

All IVI-C drivers provide a Dynamic Link Library (DLL) interface. While LabVIEW
provides the Call Library Function node to call DLLs, many IVI-C drivers also come
with a LabVIEW wrapper that provides the familiar VI interface to the driver’s
functions, making it easier to use in LabVIEW. If your IVI-C driver does not have a
LabVIEW wrapper, you can create one using a free tool by clicking on LabVIEW
Instrument Driver Import Wizard at:
http://www.ni.com/devzone/idnet/development.htm.

Note: The functionality shown in this section is available in a LabVIEW example
supplied with the IVI driver from National Instruments.

 	

Create a VI and Access the Driver
1 Launch LabVIEW.
2 From the File menu, select New VI. The Front Panel and Block Diagram

appear.
3 Right-click in the Block Diagram. The Functions palette appears.
4 Select the Instrument I/O subpalette and then the Instrument Drivers

subpallete. You can access all instrument driver VIs from this palette.
5 Click Instrument Drivers. Select hp34401a from the palette.
6 Select the hp34401a IVI driver from the palette.

Note: If the driver you want to use is not listed, download and install the driver, and
close and restart LabVIEW. The driver should now appear in the palette. The driver
palette allows you to browse the various VIs and functionality supported by the
driver.

31 	

Initialize the Instrument
1 Select Initialize With Options VI from the hp34401a palette and place it on the

Block Diagram.

2 Create constants and enter values for instrument resource name, ID Query,
Reset, and IVI option string:
• GPIB0::23::INSTR in the instrument resource name field
• False in the ID Query field
• True in the Reset field
• Simulate=1 in the Options field
Note: To create a constant, control, or indicator, right-click on the desired input
terminal and select Create.

32 	

Configure the Instrument

1 From the Configuration subpalette, select Configure Measurement VI and
place it on the Block Diagram.

2 Create constants and enter values to set the resolution to 1 millivolt, the
function to DC Voltage, and the range to 1.5 volts:
• 0.001 in the Resolution field
• DC volts in the Measurement Function field
• 1.5 in the Range field

3 Connect the instrument handle and error terminals from Initialize With Options
VI to Configure Measurement VI.

4 From the Trigger subpalette, select Configure Trigger VI and place it on the
Block Diagram.

5 Connect resource name and error information from Configure Measurement VI
to Configure Trigger VI.

6 Create a constant and enter a value of 0.01 in the Trigger Delay field.
Note: You can also set the Trigger Delay using a Property Node by replacing steps
4 & 5 with a property access as shown in the section “Setting a Property in an IVI-
C Driver” below.

Take the Reading

1 Return to the main hp34401a palette. From the Measurement subpalette,
select Read VI and place it on the Block Diagram.

2 Set the value for Timeout to 1 second (1000 ms). Enter 1000 in the Timeout
field.

33 	

3 Connect resource name and error information from Configure Trigger to Read
VI.

Display the Reading

Create an indicator for Reading from the terminal on the Read VI.

Close the Session

1 Return to the main hp 34401a palette. Select Close VI and place it on the Block
Diagram.

2 Connect resource name and error information from Read VI to Close VI.
Note: LabVIEW compiles while developing, which lets you check the program
execution at any time.

Add Error Checking

1 Return to the main functions palette. From the Dialog & User Interface
subpalette select Simple Error Handler VI and place it on the Block Diagram.

2 Connect the error information from Close VI to Simple Error Handler VI.

Run the Application

Your final VI Block Diagram should contain the elements shown below. To run your
VI:

1 Switch to the VI’s Front Panel and click on the Run arrow to run the application.
2 The Reading indicator should display a simulated reading from the instrument.

34 	

Setting a Property in an IVI-C Driver
Properties such as Trigger Delay can also be set (and read) with a property node.
This is important in cases where a configuration function is not provided by the
driver.

For example we can replace steps 4 and 5 of the “Configure the Instrument” section
with:

1 From the Functions palette select Application Control and drop a Property
Node on the Block Diagram.

2 Connect the resource name and error information from Configure
Measurement VI to the Property Node.

3 Right-click on the Property Node and select Change All to Write.
4 Click on the Property field and select Trigger >> Trigger Delay.

Using IVI-COM

To use IVI-COM drivers in LabVIEW you will use the ActiveX functions and the
Class Browser that are built-in to LabVIEW.

Create a VI and Access the Driver
1 Launch LabVIEW

35 	

2 From the File menu, select New VI. The Front Panel and Block Diagram
appear.

3 Right-click in the Block Diagram. The Functions palette appears.
4 Select the Connectivity subpalette and then the ActiveX subpallete. From this

palette, you can access ActiveX and COM objects including all IVI-COM
drivers.

5 Select Automation Open from the palette and place it on the block diagram.

6 Right-click on the Automation Refnum terminal, select Select ActiveX Class...
and then Browse...

36 	

7 From the Type Library drop-down, select the IVI Agilent 34401A (Agilent
Technologies) 1.2 Type Library Version 1.2, and then select the IAgilent34401
object. Click OK.
Note: If the IVI-COM driver you want to use is not listed, download and install the
driver and close and restart LabVIEW. The driver should now appear in the type
library browser.

Initialize the Instrument

1 From the View menu, select Class Browser. The Class Browser allows you to
invoke methods and set or get properties of the ActiveX/COM object.

2 From the Object library drop-down, select ActiveX and then Select Type
Libraries.

3 Scroll down and select the IVI Agilent 34401A (Agilent Technologies) 1.2 Type
Library Version 1.2, Click OK.

37 	

4 Back in the Class Browser, under Properties and Methods, scroll down and
select Initialize. Click Create and drag the Invoke Node to the Block Diagram.

5 Create constants and enter values for ResourceName, IDQuery, Reset, and
OptionString:
• GPIB0::23::INSTR in the instrument ResourceName field
• False in the IDQuery field
• True in the Reset field
• Simulate=1 in the OptionString field

6 Connect the automation refnum and error terminals from Automation Open to
Initialize Invoke Node.
Note: Instead of using the Class Browser, you can select an Invoke Node from the
ActiveX subpalette and select the Initialize method. To access driver properties,
you can select a Property Node from the ActiveX subpalette and select the
appropriate property or you can use the Class Browser for both IVI-C and IVI-COM
drivers.

Configure the Instrument
1 Go back to the Class Browser, and under Properties and Methods, double-click

the DC Voltage property and select the Configure method. Click Create and
drag the Invoke Node to the Block Diagram.

2 Create constants and enter values to set the Resolution to 1 millivolt and the
Range to 1.5 volts:
• 0.001 in the Resolution field
• 1.5 in the Range field

38 	

3 Connect the automation refnum and error terminals from Initialize Invoke Node
to DCVoltage.Configure Invoke Node.

4 In the Class Browser, go back to the top-level object and double-click the
Trigger property and select the Delay property. Click Create Write and drag the
Property Node to the Block Diagram.

5 Create a constant and enter a value of 0.01 seconds for the Delay field.
6 Connect the automation refnum and error terminals from DCVoltage.Configure

Invoke Node to Trigger.Delay Property Node.

Take the Reading

1 Return to the Class Browser, and under Properties and Methods, double-click
the Measurement property and select the Read method. Click Create and drag
the Invoke Node to the Block Diagram.

2 Set the value for Timeout to 1 second (1000 ms) by entering 1000 in the
MaxTimeMilliseconds field.

3 Connect the automation refnum and error terminals from Trigger.Delay
Property Node to Measurement.Read Invoke Node.

Display the Reading

Create an indicator for Measurement.Read from the Invoke Node terminal.

Close the Driver and Automation Sessions

1 Return to the Class Browser, and under Properties and Methods, double-click
the Close method. Click Create and drag the Invoke Node to the Block
Diagram.

2 Close the Class Browser. From the ActiveX subpalette, select Close Reference
and place on the Block Diagram.

3 Connect the automation refnum and error terminals from Measurement.Read
Invoke Node to Close Invoke Node and then to Close Reference function.

Add Error Checking

1 Return to the main functions palette. From the Dialog & User Interface
subpalette select Simple Error Handler VI and place it on the Block Diagram.

2 Connect the error information from Close Reference function to Simple Error
Handler VI.

39 	

Run the Application
Your final VI Block Diagram should contain the elements shown below. To run your
VI:

1 Switch to the VI’s Front Panel and click on the Run arrow to run the application.
2 The Reading indicator should display a simulated reading from the instrument.

Further Information

Learn more about using an IVI instrument driver in LabVIEW in this tutorial:
http://www.ni.com/tutorial/4556/en/.

 	

• • •
Using IVI with LabWindowsTM/CVITM

• • •

The Environment

National Instruments LabWindows/CVI is an ANSI-C integrated development
environment that provides a comprehensive set of programming tools for creating
test and control applications. LabWindows/CVI combines the longevity and
reusability of ANSI-C with engineering-specific functionality designed for
instrument control, data acquisition, analysis, and user interface development.

Example Requirements
• LabWindows/CVI 8.1 or later
• IVI-C: Keysight 34401A IVI-C driver, Version 4.5, January 2015 (from

National Instruments)
Note: IVI-C driver requires the NI IVI Compliance Package to be installed.
Check National Instruments Web site for details.

Download and Install the Driver

If you have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it. You can also refer to Chapter 1, Download
and Install IVI Drivers, for instructions.

This example uses an IVI-C driver. IVI-C is the preferred driver for
LabWindows/CVI.

Create a New Project and Add Instrument Driver Files

1 Launch LabWindows/CVI.
2 Select File, select New, and click Project.
3 To create a new C source file, select New and click Source (*.c). Save the file.
4 Select Edit and click on Add Files to Project to add the C source file to your

project.
5 Select Edit and click on Add Files To Project to add one of the following

instrument driver files to your project: hp34401a.fp, hp34401a.c, or
hp34401a.lib.

41 	

Note: Any of the three files listed above will work. Adding one of the HP 34401A
instrument driver files loads that instrument driver. View the available functions
in the library tree in the workspace window.

6 Add the following line to your program to include the instrument driver header
file:
#include “hp34401a.h”

Initialize the Instrument

1 From the Edit menu, select Insert Construct, and click Main.
2 Find the hp34401a instrument driver in the instrument driver tree. Select

Initialize with Options from the library tree. The Initialize with Options function
panel opens.

3 Enter values for Resource Name, ID Query, Reset Device, and Option String:
• GPIB0::23::INSTR in the Resource Name field
• No for ID Query control
• Yes for Reset Device control
• Simulate=1 in the Options field
Note: The RangeCheck, QueryInstrStatus, and Cache options appear
automatically. The options are enabled by default.

42 	

4 Select the Instrument Handle parameter. From the Code Menu, click Declare
Variable to set the Instrument Handle parameter.

5 Enter session in the Variable Name field.
6 Check the boxes titled Execute declaration in Interactive Window and Add

declaration to top of target file “*.c”. Click OK.
Note: To test the function with the specified parameter values, select Code and
click Run Function Panel or click the run button in the toolbar to operate the
function panel interactively.

7 From the Code Menu, click Insert Function Call to insert the function and
values into your program. Close the function panel. The
hp34401a_InitWithOptions function appears in your program.

43 	

Configure the Instrument

1 From the library tree, select Configuration and click ConfigureMeasurement.
The ConfigureMeasurement function panel opens.

2 Set the function to DC Voltage, range to 1.5 volts, resolution to 1 millivolt, and
instrument handle to session. Select and enter:
• DC Volts from the drop-down list in the Measurement Function field,
• 1.5 in the Range field,
• 0.001 in the Resolution field, and
• session in the Instrument Handle field.

44 	

3 Select the Code menu and click Insert Function Call to insert the function and

values into your program. Close the function panel. The
hp34401a_ConfigureMeasurement function appears in your program.

4 From the library tree, select Configuration, select Trigger, and click
ConfigureTrigger. The Configure Trigger function panel opens.

5 Set the trigger source to immediate, the trigger delay to 0.01 seconds, and the
instrument handle to session. Select and enter:
• Immediate from the drop-down list in the Trigger Source field
• 0.01 in the Trigger Delay field
• session in the Instrument Handle field

6 Select Code and click Insert Function Call to insert the function and values into
your program. Close the function panel. The hp34401a_ConfigureTrigger
function appears in your program.

Set the Reading Timeout

1 From the library tree, select Measurement and click Read. The Read dialog
opens.

2 Set the value for Timeout to 1 second (1000 ms), and instrument handle to
session. Enter:
• 1000 in the Read field
• session in the Instrument Handle field

45 	

Display the Reading
1 Select the Reading parameter.
2 Select Code and click Declare Variable. The Declare Variable dialog appears.
3 Enter reading in the Variable Name field.
4 Check the boxes titled Execute declaration in Interactive Window and Add

declaration to top of target file “*.c”. Click OK.
5 Select Code and click Insert Function Call to insert the function and values into

your program. Close the function panel. The hp34401a_Read function appears
in your program.

Close the Session

1 From the library tree, select Close. The Close function panel opens.
2 Enter session in the Instrument Handle field.
3 Select Code and click Insert Function Call to insert the function and values into

your program. Close the function panel. The hp34401a_Close function
appears in your program. Your final program should contain the code below:

#include <ansi_c.h>
#include "hp34401a.h"
#include <cvirte.h>
static ViReal64 reading;
static ViSession session;

int main (int argc, char *argv[])
{

if (InitCVIRTE (0, argv, 0) == 0)
return -1; /* out of memory */

hp34401a_InitWithOptions (
"GPIB0::23::INSTR", VI_FALSE,
VI_TRUE, "Simulate=1", &session);

hp34401a_ConfigureMeasurement (session,
HP34401A_VAL_DC_VOLTS, 1.5, 0.001);

hp34401a_ConfigureTrigger (session,
HP34401A_VAL_IMMEDIATE, 0.01);

hp34401a_Read (session, 1000, &reading);
printf ("%f", reading);
hp34401a_close (session);
return 0;

}

46 	

Note: To display the reading, add a printf function. Before the Close function, type:

printf (“%f”, reading);

Note: Including error checking in your programs is good practice. Use the
CheckErr macro provided in the ivi.h file to handle errors. See the example
included with the hp34401 downloaded driver for error handling demonstration
code.

Further Information

Learn more about LabWindows/CVI at http://www.ni.com/lwcvi/.

The mark LabWindows is used under a license from Microsoft Corporation.

47 	

• • •
Using IVI with MATLAB®
• • •

The Development Environment
MATLAB from MathWorks is an interactive software environment for data
acquisition and analysis, waveform generation, algorithm creation, and test system
development. MATLAB also provides a technical computing language that is
designed to help you solve technical challenges faster than with traditional
software environments.

MATLAB supports IVI-C and IVI-COM instrument drivers using the Instrument
Control Toolbox. The toolbox provides additional MATLAB functionality.

Requirements for this Example

• MATLAB R2014a or higher
• MATLAB and Instrument Control Toolbox
• Agilent 34401A IVI driver (from Keysight Technologies)
• Keysight IO Libraries Suite 17 or higher

Download and Install the Driver

If you have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it.

Configure the IVI Driver

The Instrument Control Toolbox provides a graphical Test & Measurement Tool that
enables you to interact with instrument drivers and instruments without writing
MATLAB code. The Test & Measurement Tool lets you configure IVI driver
properties in MATLAB and store them in the IVI configuration store.

1 At the MATLAB command line, type tmtool to launch the Test & Measurement
Tool GUI. Or from the MATLAB Main Menu, select Toolboxes, then Instrument
Control Toolbox and click Test & Measurement Tool. The Test & Measurement
Tool GUI opens.

2 In the tree at left, click the IVI node under the Instrument Drivers node.
3 Select the Hardware Assets tab. In the Hardware Assets dialog, select Add and

enter the following:
• myDMM in the Name field

48 	

• This is my Agilent 34401 Digital Multimeter in the Description field (optional)
• GPIB0::23 in the IO Resource name field

4 Select the Software Modules tab. The installed IVI drivers appear.
Note: If you have not installed the IVI driver, it will not appear in this list. You must
close MATLAB, install the driver, and restart MATLAB for the driver to appear.

5 Select Agilent34401 from the drop-down list. The Software Modules dialog lists
the module name, supported instrument models, and description.

49 	

Next, you must define your Driver Session to link the Software Module with the
Hardware Asset and indicate whether you want to use Simulation Mode or other
optional parameters when connecting.

6 Select the Driver Sessions tab. In the Driver Sessions dialog, select Add and
enter the following:
• DMM in the Name field
• This session matches the Agilent 34401 driver with the hardware asset of

GPIB0::23, and turns on Simulation mode of the driver in the Description
field (optional)

7 Select Agilent34401 in the Software module drop-down list.
8 Select myDMM in the Hardware asset drop-down list.
9 Check Simulate in the options.

 	

10 Select the Logical Names tab. In the Logical Names dialog, select Add and

enter the following:
• dmm in the Name field
• This logical name enables your program to access any DMM independent

of manufacturer or hardware asset in the Description field (optional)
• DMM in the Driver session field

 	

11 Select File and Save IVI Configuration Store. Saving to the store
may take several moments.

12 Close the Test & Measurement Tool.

Configure and Control the Instrument
This next section consists of 2 parts. The first illustrates how to
communicate with the DMM using an IVI-C driver and the second
illustrates how to communicate with the DMM using an IVI-COM driver.
IVI-COM drivers are only supported on 32-bit MATLAB. IVI-C drivers
are the recommended way to communicate with instruments when
using IVI drivers as they are supported in both 32-bit and 64-bit
versions of MATLAB.

Connecting with an IVI-C driver:

Additional Software Required

To	use	IVI-C	drivers,	first	install	National	Instruments	IVI	Compliance	Package	
version	4.0	or	later	

Create an Instance of the Instrument using the IVI-C Class-

 	

Compliant Interface
DMM IVI drivers provide a standard interface, called the class-compliant
interface, to access functionality that is consistent across all instruments of a
particular type. We’ll access the Agilent 34401 using the standard DMM
interface. MATLAB also supports access to the device-specific interface
representing unique capabilities of the instrument.

To create an instance of the instrument and assign to a variable in the
MATLAB environment, type

myDmm = instrument.ivic.IviDmm();

Connect to the Instrument
The Initialize command connects to the instrument. The instrument will be
initialized with the properties you specified using the Test & Measurement
Tool. Type

myDmm.init('dmm',false,false)

Configure the Instrument
To set a range of 1.5 volts and resolution of 0.001 volts, type

myDmm.BasicOperation.Range = 1.5;
myDmm.BasicOperation.Resolution = 0.001;

Set the Trigger Delay
To set the trigger delay to 0.01 seconds, type

myDmm.Trigger.Trigger_Delay = 0.01;

 	

Display Reading
To display the reading, type

data = myDmm.Measurement.Read(1000)

Note: data=0 if using Agilent driver in simulation mode

Close the Connection to the Instrument
To disconnect, type

myDmm.Close()
Your final application should contain the code below:

>> myDmm = instrument.ivic.IviDmm();
>> myDmm.init ('dmm',false,false)
>> myDmm.BasicOperation.Range = 1.5;
>> myDmm.BasicOperation.Resolution = 0.001;
>> myDmm.Trigger.Trigger_Delay = 0.01;
>> data = myDmm.Measurement.Read(1000)
data =
0
>> myDmm.Close();

Connecting with an IVI-COM driver:

NOTE: IVI-COM drivers can only be used with 32-bit version of MATLAB. IVI-C
drivers are the recommended way to connect to instruments from MATLAB.

Create an Instance of the Instrument using the IVI-COM Class-
Compliant Interface
DMM IVI drivers provide a standard interface, called the class-compliant
interface, to access functionality that is consistent across all instruments of a
particular type. We’ll access the Agilent 34401 using the standard DMM
interface. MATLAB also supports access to the device-specific interface
representing unique capabilities of the instrument.

To create an instance of the instrument and assign to a variable in the MATLAB
environment, type

 	

myDmm = instrument.ivicom.IviDmm('dmm');

Connect to the Instrument
The Initialize command connects to the instrument. The instrument will be
initialized with the properties you specified using the Test & Measurement Tool.
Type

myDmm.Initialize('dmm',false,false,'')

Configure the Instrument
To set a range of 1.5 volts and resolution of 0.001 volts, type

myDmm.Range = 1.5;
myDmm.Resolution = 0.001;

Set the Trigger Delay
To set the trigger delay to 0.01 seconds, type

myDmm.Trigger.Delay = 0.01;

Display Reading
To display the reading, type

data = myDmm.Measurement.Read(1000)

Note: data=0 if using Agilent driver in simulation mode.

Close the Connection to the Instrument
To disconnect, type

myDmm.Close()

Your final application should contain the code below:

>> myDmm = instrument.ivicom.IviDmm('dmm');
>> myDmm.Initialize('dmm',false,false,'')
>> myDmm.Range = 1.5;
>> myDmm.Resolution = 0.001;
>> myDmm.Trigger.Delay = 0.01;
>> data = myDmm.Measurement.Read(1000)

data = 0

55
	

>> myDmm.Close();

Further Information

To learn more about using MATLAB with IVI instrument drivers over both class-
compliant and device-specific interfaces, visit: http://www.mathworks.com/ivi

MATLAB is a registered trademark of MathWorks, Inc.

56 	

• • •
Using IVI with Visual Basic 6.0
• • •

The Environment

Visual Basic 6.0 is a programming environment derived from Basic and
developed by Microsoft for the Windows operating system. Software vendors
and developers use VB to create applications quickly by writing code to
accompany on-screen objects such as buttons, windows, and dialog boxes.

This chapter focuses on VB 6.0, which is not the most current version. If you
are new to VB, we recommend another guide in this series, Getting Started
with IVI Drivers: Your Guide to Using IVI with C# and Visual Basic .NET.

Example Requirements
• Visual Basic 6.0
• Microsoft Visual Studio 2010
• IVI-COM: Agilent 34401A IVI-COM, Version 1.2.2.0, October 2008 (from

Keysight Technologies); or
• IVI-C: Keysight 34401A IVI-C driver, Version 4.5, January 2015

(from National Instruments).
• Agilent IO Libraries Suite 16.1 or later
• National Instruments IVI Compliance Package version 4.0 or later

Download and Install the Driver

If you have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it. You can also refer to Chapter 1, Download
and Install IVI Drivers, for instructions.

This example uses an IVI-COM driver. IVI-COM is the preferred driver for Visual
Basic 6.0, but IVI-C is also supported via the inclusion of .bas files.

Create a New Project and Reference the Driver

To use an IVI Driver in a Visual Basic program, you must first create a project and
add a reference to the driver.

1 Launch Visual Basic and create a new project using Standard EXE project.
Note: This creates a Windows Application program.

2 From the Start Menu, select Project, and click References. The References
dialog appears.

 	

3 Select the IVI Agilent34401 1.1 Type Library from the drop-down list. Place a
check in the box next to this driver.
Note: If you have not installed the IVI driver, it will not appear in this list. You must
close the References dialog, install the driver, and select References again for the
driver to appear.

4 Click OK. The References dialog closes.

Note: You must click OK for Visual Basic to accept the References; however, the
software provides no confirmation. You can verify the driver is available for use by
opening the Add References dialog and viewing the checked references. All
checked references appear near the top of the list.

Add a Button
1 Click the Command Button in the Toolbox to create a button.
2 Drag the button to the form and drop it.
3 Change the (Name) property to btnTest and the Caption property on the

Command1 button to Test in the Properties list at right.

61 	

Create an Instance of the Driver

1 Double-click Test. The Project1 – Form1(Code) screen appears. Note that
some code has already been added, including Private Sub
btnTest_Click() and End Sub.

2 To enable strong type checking, at the top of the screen before the Private
Sub line type
Option Explicit

3 Create a variable for the driver and initialize it with the New statement. On the
next line type
Dim dmm As New Agilent33401

Initialize the Instrument

Now you will enter the code that will execute when you click Test.

On the line after Private Sub btnTest_Click(),type dmm. Then type
dmm.Initialize "GPIB::23", False, True, "Simulate=True"

Note: As soon as you type the period, Intellisense displays the possible methods
and properties and helps ensure you use correct syntax and values.

Note: From the Start Menu, select View, and click Object Browser to view the
functions and parameters available in the instrument driver. Limit the Object
Browser to a specific library by selecting it in the top left list box.

62 	

Configure the Instrument

Set the function to DC Voltage, range to 1.5 volts, and resolution to 1 millivolt.

1 Type dmm.Function = Agilent34401FunctionDCVolts
2 Type dmm.DCVoltage.Configure 1.5, 0.001
3 Select Configure from the drop-down list and press the space bar.

Note: The Object Browser shows the parameters and syntax for Configure in the
box at bottom, along with a short description.

4 Type 1.5, 0.001

63 	

Set the Trigger Delay
Set the trigger delay to 0.01 seconds.

Type: dmm.Trigger.Delay = 0.01

Display the Reading

Set the reading timeout to 1 second and display the reading.

1 Return to the form view and click the Label Button in the Toolbox to create a
label.

2 Drag it to the form and drop it.
3 Change the Name to lblResult in the Properties list at right.
4 Remove the text under Caption.
5 In the code after the trigger delay command, type

lblResult.Caption = dmm.Measurement.Read(1000)

Close the Session

Type dmm.Close

Your final program should contain the code below.

Option Explicit

Dim dmm As New Agilent34401

Private Sub btnTest_Click()

dmm.Initialize “GPIB::23”, False, True, “Simulate=True”

dmm.Function = Agilent34401FunctionDCVolts

dmm.DCVoltage.Configure 1.5, 0.001

dmm.Trigger.Delay = 0.01

lblResult.Caption = dmm.Measurement.Read(1000)

dmm.Close

End Sub

64 	

Tips

The Agilent 34401 driver conforms to the IviDmm class, so you can easily write
your program to use the class-compliant interfaces instead of the instrument-
specific interfaces. You will need to add a Reference to the IviDmm Class Type
library for your project to compile. Here is the code:

Option Explicit

Dim dmm As New Agilent33401
Dim ividmm As IIviDmm

Private Sub btnTest_Click()

Set ividmm = dmm
ividmm.Initialize "GPIB::23", False, True, "Simu-
late=True"
ividmm.Configure IviDmmFunctionDCVolts, 1.5, 0.001
ividmm.Trigger.Delay = 0.01
lblResult.Caption = ividmm.Measurement.Read(1000)
ividmm.Close

End Sub

65 	

Further Information
Learn more about Visual Basic at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnanchor/html/vb6anchor.asp.

Microsoft® and Visual Studio® are registered trademarks of Microsoft Corporation
in the United States and/or other countries.

66 	

• • •

 Using IVI with Keysight VEE Pro
• • •

The Development Environment

Keysight Visual Engineering Environment Pro is a graphical programming
environment designed to help you quickly create and automate measurements and
tests. VEE Pro lets you program by creating an intuitive block diagram. You select
and edit objects from pull-down menus and connect them to specify the program
flow. VEE Pro also includes Instrument Manager, which facilitates control and
management of your devices. Let’s see how VEE Pro works with IVI.

Example Requirements

• Keysight VEE Pro 9.2
• Agilent 34401A IVI-COM/IVI-C, Version 1.2.2.0, October 2008 (from

Keysight Technologies)
• Keysight IO Libraries Suite 16.0 or greater

Download and Install the Driver

If you have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it. You can also refer to Chapter 1, Download
and Install IVI Drivers, for instructions.

This example uses the IVI-COM driver. VEE Pro does not support the use of IVI-C
drivers through the Instrument Manager.

Launch the Instrument Manager and Select the Driver

If you have correctly installed the IVI driver, VEE Pro’s Instrument Manager will
automatically find it for you.

1 Launch VEE Pro.
2 From the Main Menu, select I/O, and click Instrument Manager.

Note: If you were connected to a live instrument, you would click the Find
Instruments button at the right in this screen and then skip to the next section.

3 Click Add under instrument in the list at the right to add a simulated instrument.
The Instrument Properties dialog box appears.

4 In the Instrument Properties dialog box, enter or select the following:
• myDMM in the Name field
• GPIB in the Interface field
• 0 in the Board Number field

67 	

• GPIB0::23::INSTR in the VISA Address field

5 Click Advanced. The Advanced Instrument Properties dialog box appears.
6 Click the IVI-COM Driver tab. Select Agilent 34401 from the drop-down list.

Note: The VISA address that you entered earlier appears automaticaly in the
Address field.

68 	

7 Click the IVI-COM Driver tab. Select Agilent 34401 from the drop-down list.
Note: The VISA address that you entered earlier appears automatically in the
Address field.

8 Click OK. The dialog closes and returns to the Instrument Properties dialog.
9 Click OK. The dialog closes and returns to the Instrument Manager.

Congratulations! You can now access the IVI Driver in the Instrument Manager.
Note: If the driver is correctly installed, the text darkens on the IVI-COM Driver
button under Create I/O Object in the list at the right.

Create an Instance of the Driver
1 Click IVI-COM Driver under Create I/O Object at the right. An outline of the

object appears.
2 Move the object onto your workspace.
3 Double-click <Double-Click to Add Operation> in the To/From myDMM object.

The Select an Operation dialog box appears.
4 Select CreateInstance to create an instance of the Agilent 34401 driver.

Note: At the bottom of the dialog box, the code for the operation appears along with
an explanation of its function.

69 	

5 Click OK. The Edit CreateInstance dialog box appears.
6 Click OK.

Initialize the Instrument

1 Double-click to add another operation. The Select an Operation dialog box
appears.

2 Select Initialize to initialize the simulated Agilent 34401. Click OK. The Edit
Initialize dialog box appears.

3 In the Edit Initialize dialog box, GPIB0::23::INSTR has already been entered
in the ResourceName field. Enter or select the following:
• False in the IdQuery field
• True in the Reset field
• simulate=true in the OptionString field

 	

4 Click OK.

Configure the Instrument

1 Double-click to add another operation. The Select an Operation dialog box
appears.

2 Expand the treenode DCVoltage and select Configure. Click OK. The Edit
Configure dialog box appears.

3 To set a range of 1.5 volts and resolution of 1 millivolt, enter the following in the
Edit Configure dialog box:
• 1.5 in the Range field
• 0.001 in the Resolution field

4 Click OK.

Set the Trigger Delay

1 Double-click to add another operation. The Select an Operation dialog box
appears.

2 Expand the treenode Trigger and select Delay. Click Set. The Edit Delay dialog
box appears.

3 To set a trigger delay of 0.01 seconds, enter 0.01 in the delay field.
4 Click OK.

Set the Reading Timeout

1 Double-click to add another operation. The Select an Operation dialog box
appears.

2 Expand the treenode Measurement and select Read. Click OK. The Edit Read
dialog box appears.

3 To take a reading with a timeout of 1 second, enter 1000 in the
MaxTimeMilliseconds field.

4 Click OK. The To/From myDMM object includes an additional output node
labeled return. This will hold the value returned from the Read Measurement
operation.

Close the Session

Now that you have completed all of the driver operations, you should close the
driver session to free resources.

1 Double-click to add another operation. The Select an Operation dialog box
appears.

71 	

2 Select Close to release all resources associated with the simulated Agilent
34401. Click OK.

Display the Reading

1 To display the measurement, from the Main Menu select Display, and click
AlphaNumeric. Place the AlphaNumeric object on your workspace.

2 Connect a wire from the return output terminal on To/From myDmm to the input
terminal of the AlphaNumeric object.

3 Click F5 or the Right Arrow button on the toolbar to run the program. The
Display returns a simulated result.

Tips
Another Method to Display the Reading
You can display the measurement in another way as well. From the Main Menu,
select select Data, Variable, and click Declare Variable. Declare a global variable
named agilent34401Class with a Type Object and Sub Type .NET. Select Edit
and in the Specify Object Type dialog, select the following:

• Agilent.Agilent34401.Interop in the Assembly field
• Agilent.Agilent34401.Interop in the Namespace field
• Agilent34401Class in the Type field
Then delete the agilent34401Class output terminal. You can now share this IVI-
COM object with other To/From objects or formula objects in VEE. This will let you
use multiple objects for the same driver instance without creating all of your driver
commands in one object.

Further Information
Learn more about VEE Pro at www.keysight.com/find/vee.

72 	

• • •
Advanced Topics
• • •

Now that you’ve seen how to create a short program to perform a measurement in
popular programming environments, we want to introduce a few advanced IVI
topics: architecture, requirements for interchangeability, Configuration Store, and
future developments. These should broaden your view of the capabilities of IVI
drivers.

IVI Architecture

Up to this point, we’ve focused on using either an IVI-COM or IVI-C driver from a
specific ADE. The schematic below illustrates the use model for IVI drivers that was
deployed in the previous chapters. This use model is the simplest method of using
an IVI driver but does not enable interchangeability. This section explains the
architecture, including the capabilities of the various driver types and their
contribution to interchangeability.

Driver API
To support popular programming languages and development environments, IVI
drivers provide either an IVI-COM or an IVI-C API. Driver developers may provide
both interfaces, as well as wrapper interfaces that improve usability in specific
development environments.

The IVI-COM driver uses a standard Component Object Model (COM) interface
that provides access to the functions defined in the class through a hierarchy of
methods and properties.

The IVI-C driver appears as a dynamic link library (DLL), such as Windows DLL,
composed of standard C functions. The C specifications also define components
such as error handling and driver session creation and management, which ensure
robustness and interoperability.

The easiest interface to use in a given Application Development Environment is
one that is native to the environment. So a C interface works best in C and a COM
interface in Visual Basic. Some ADEs support only one type of interface, however,
which makes the choice simple.

Driver developers also provide wrapper interfaces optimized for specific
development environments. The wrapper functions as an adapter between an ADE
and a driver not designed for that ADE. It enables the ADE to use technologies for
which no native implementation exists. In Chapter 6, IVI with MATLAB, for
example, generating an instrument wrapper is a key step in creating the program.

73 	

Driver Types
The schematic on the next page shows the three basic types of drivers: Both IVI-
COM and IVI-C use Custom and Class Compliant Drivers, but Class Drivers are
unique to IVI-C. Usually, you only need to be concerned about the type of driver if
you want to enable interchangeability. To understand the differences among them,
you first need to understand the various capabilities these drivers support:

Inherent capabilities: capabilities required by the IVI Foundation, such as
instrument simulation, state-caching, interchangeability checking, and range
checking, as well as commands, such as Initialize, Reset, and Close. Some
capabilities are required for all drivers, but others are optional.

Base class capabilities: capabilities identified by an IVI Foundation working group
as common among the majority of instruments in a class. In the DMM class, for
example, base capabilities include performing a DC voltage or current
measurement.

Class extension capabilities: capabilities identified by an IVI Foundation working
group as less common but still supported by multiple instruments within a class. In
the DMM class, for example, class extension capabilities include temperature
measurement.

Instrument-specific or vendor-specific capabilities: capabilities not
standardized by IVI and unique to a manufacturer’s specific instrument. In the
DMM class, for example, this might be a measurement that uses a thermocouple
to sense the temperature.

74 	

Now that we’ve defined the capabilities, we can look at each driver in terms of those
it supports.

Custom Specific Driver: This driver supports only IVI inherent capabilities and
instrument-specific capabilities, but not base class or class extension capabilities.
This lets instrument manufacturers 1) innovate and provide specialized features,
and 2) supply IVI drivers for instruments for which no class specification exists,
such as network analyzers and Bluetooth testers.

Class Compliant Specific Driver: This driver must support inherent and base
class capabilities. These drivers may also support class extensions and
instrument-specific capabilities. For IVI-C and IVI-COM drivers, a Class Compliant
Specific Driver enables interchangeability through generic instrument Application
Programming Interfaces (APIs) that can be used with a multitude of instruments.
See more about APIs below.

Class Driver: This driver is used for IVI-C only. A Class Driver also supports
inherent, base class, and all class extension capabilities. A Class Driver enables
instrument interchangeability when using IVI-C Class Compliant Specific Drivers.

For IVI-COM drivers, the IVI inherent capabilities, custom capabilities, and the
class capabilities may be provided in a single driver. All IVI-COM drivers include
the inherent capabilities. If an IVI-COM driver only has custom and inherent

75 	

capabilities, it is called an IVI-COM custom driver. If the driver includes the class
capabilities, it is called an IVI-COM Class Compliant driver. IVI-COM Class
Compliant drivers may or may not include custom capabilities.

Instrument I/O
All IVI drivers communicate to the instrument hardware through an I/O Library. The
VISA library is typically used because it provides uniform access to GPIB, RS-232,
USB-TMC and LAN instrument. Drivers that communicate with insruments that
only use RS-232 or LAN occasionally include their own I/O that does not require
VISA.

Shared Components
IVI Foundation members have cooperated to provide common software
components, called IVI Shared Components, that ensure compatibility among
drivers from various manufacturers. These components provide services to drivers
and driver clients that need to be common to all drivers.

IVI Configuration Server: This component is the run-time module responsible for
providing configuration data to IVI drivers. The Configuration Server specifically
provides system initialization and configuration information.

COM Session Factory: This component can dynamically load an IVI-COM
software module without requiring the application program to identify the IVI
software module when it is compiled. This allows the test program source code to
have all references to a specific instrument removed. This capability is provided in
IVI-C using an IVI-C Class driver.

Interchangeability

One aspect of the IVI standard is instrument interchangeability, which allows you
to write and compile your program for an instrument from one manufacturer and
then swap it out for the same type of instrument from another manufacturer. After
making changes to a configuration file on your computer to identify the new
instrument (and driver) and the hardware address (if that changes), you can run
your program without modifying or recompiling it. That’s in an ideal world, of
course.

The minimum necessary requirements for interchangeability include the following:

• Drivers for both instruments must be of the same type (IVI-C or IVI-COM);
• Both drivers must implement the same instrument class. For example, both

must conform to the requirements for IviDmm or IviScope;
• For IVI-C, your program must use a Class Driver, which in turn instantiates the

Class Compliant Specific Driver and calls class compliant functions in it.
• Your program calls only those Class Extension functions supported by both

drivers.
• Your program never calls Instrument Specific functions.

76 	

• The instruments must provide the same behavior, at least with respect to the
calling program.

Meeting these requirements is necessary to achieve “100%” interchangeability.
However, if your application does not meet all of these requirements, in some
cases you may be able to add additional code to your program to handle the
differences between the instruments or drivers you are using and still achieve a
certain degree of interchangeability.

The images below depict the functionality of the IVI Configuration Server and
Configuration Store and COM Session Factory in their role of enabling
interchangeability among IVI-COM and IVI-C drivers.

77 	

IVI Configuration Store

The IVI Configuration Store holds information about the IVI drivers installed on your
computer and configuration information for your instrument system. By providing a
way to flexibly reference and configure IVI drivers and instrument I/O connections
outside of your application, the IVI Configuration Store makes interchangeability
possible.

Consider an application in which you use a specific driver to communicate with a
specific instrument model at a fixed location. Change anything – the driver, the
model, the location – and you have to modify the application to accommodate that
change.

That’s when the Configuration Store comes into play. An IVI Configuration Store
offers the capability to work with different instrument drivers, models, or locations,
without having to modify your application. You can imagine how useful this can be
when using a compiled application that you cannot easily modify.

The IVI Configuration Store contains data that describe: the software modules used
to control the instruments, the hardware assets that perform measurement or
stimulus functions, the driver session that associates the software and hardware,
and the logical name that lets you point to a specific session.

SoftwareModule: A SoftwareModule provides information about a particular
instrument driver software component that is installed and registered on your
system. This read-only component is commonly provided by the instrument vendor

78 	

and contains the commands and functions necessary to communicate with the
instrument. You can use the software module entry data to locate the component
on your system and determine what instrument models and class interfaces (called
Published APIs in the configuration server) are supported by the component.

HardwareAsset: A HardwareAsset describes a specific physical device in your
system with which you communicate such as an oscilloscope or power supply. The
HardwareAsset includes a resource descriptor – a string that specifies the I/O
interface and address of a hardware asset, such as GPIB::23::INSTR.

DriverSession: A DriverSession provides the information needed to use a
driver in a particular context. It makes the association between a
SoftwareModule and a HardwareAsset. It defines a set of properties for use
by IVI instrument driver software modules, such as initial configurable settings for
attributes, virtual name mappings, and simulation settings. You can configure a
DriverSession for each instrument, for each of its possible I/O resource
descriptors, and for each program that uses it.

LogicalName: A LogicalName is a configurable pointer to a particular
DriverSession. Application programs use logical names to avoid direct
references to software modules and hardware assets. In a typical setup, the
application communicates with an instrument via a logical name. If the application
needs to communicate with a different instrument (for example, the same kind of
scope at a different location), only the logical name within the IVI Configuration
Store needs to be updated to point to the new driver session. You don’t need to
rewrite any code in the application, because it uses the same logical name.

The illustration below shows how the IVI Configuration Store enables
interchangeability. The application is developed and makes calls via the logical
name. In the illustration, this is shown as DMM. The actual DMM is from
Vendor X at address GPIB1::21::INSTR and uses the Vendor X DMM IVI-COM
driver. In the Configuration Store, the logical name DMM is associated with a
Driver Session that is configured to the specific information of the Vendor X
DMM.

79 	

In the illustration below, we replace the Vendor X DMM with a Vendor Y DMM. All
we need to do is change the LogicalName so that it points to a different
DriverSession. In this example, change the LogicalName so that it point to the
Vendor Y DriverSession. We do not need to make any modifications to the
application itself. All changes are contained within the Configuration Store.

Below we show examples of using interchangeability using logical names with IVI-
COM and IVI-C.

 	

IVI-COM
This C# example shows interchangeability using IIviDriver, which references all of
IVI’s inherent capabilities.

IIviDriver

1 Create a string variable for logical name.
string logicalName = "AgilentDriver";

2 Add a reference to the Session Factory. Go to Project and Add Reference.
Select the IVI Session Factory Type Library under the COM tab.

3 Create an instance of the Session Factory.
IIviSessionFactory factory = new IviSessionFactoryClass();

4 Set the type to match the referenced IVI Instrument Class, for class
interchangeability. This example uses IIviDriver, because it is common to all
drivers. This uses the Session Factory to create a driver based on the logical
name "AgilentDriver."

5 In the Configuration Store, logical name "AgilentDriver" points to a driver
session. The driver session points to a software module, which can be any IVI-
COM driver. The Session Factory creates an instance of the driver and returns

81 	

a reference to the instance of the driver. This line of code then casts the
reference returned to type IIviDriver, from which all of IVI’s inherent capabilities
can be referenced.
IIviDriver driver =
(IIviDriver)factory.CreateDriver(logicalName);

6 Initialize is required, because the Session Factory does not take care of that
function.
driver.Initialize(logicalName, true, true);

7 Identity is a property of IIviDriver that references the IIviDriverIdentity interface.
Identifier is a property of IIviDriverIdentity interface that returns a string that
identifies the driver.
string identifier = driver.Identity.Identifier;

8 Print the string.
Console.WriteLine("Identifier: {0}", identifier);

IIviDmm
If we want the code to use multiple drivers that all support the DMM class and use
the IVI DMM class interfaces, we must modify it as shown below. Note that only IVI-
COM drivers that implement the IVI DMM class will work with this program.

1 Create a string variable for logical name.
string logicalName = "LineVoltage";

2 Create an instance of the Session Factory.
IIviSessionFactory factory = new IviSessionFactoryClass();

3 Set the type to match the referenced IVI Instrument Class for class
interchangeability. This code for IIviDmm uses the factory to create a driver
based on the logical name "LineVoltage."

4 In the Configuration Store, logical name "LineVoltage" points to a driver
session. The driver session points to a software module, which can be any IVI-
COM driver. The Session Factory creates an instance of the driver and returns
a reference to the instance of the driver. This line of code then casts the
reference returned to type IIviDmm, from which all of IVI DMM’s class-
compliant features can be referenced.
IIviDmm dmm = (IIviDmm)factory.CreateDriver(logicalName);

5 Initialize is required, because the session factory does not take care of that
function.
dmm.Initialize(logicalName, false, false, “simulate=true”);

82 	

The rest of the code follows that used for the examples, but note that it is written to
the class-compliant interfaces, not the instrument-specific ones.

dmm.Configure(IviDmmFunctionEnum.IviDmmFunctionDCVolts, 1.5,
0.001);

dmm.Trigger.Delay = 0.01;

Console.WriteLine(dmm.Measurement.Read(1000).ToString());

dmm.Close();

IVI-C

This C example shows how to use an IVI-C Class Driver to achieve
interchangeability. It is very similar to the IVI-C examples in Chapters 2 and 5
except for 3 differences:

1 The function calls are all for the class driver and do not refer to the particular
instrument being used, e.g., IviDMM_Read vs. HP34401A_Read

2 The parameters in certain function calls are generic for the instrument class
and do not refer to the particular instrument being used, e.g.,
IVIDMM_VAL_DC_VOLTS vs. HP34401A_VAL_DC_VOLTS

3 The initialize function refers to a logical name instead of the instruments
physical address, in this case “SampleDMM” vs. “GPIB0::23::INSTR”

In order to interchange a different DMM for the Agilent 34401A DMM, you would
update your configuration store to have the logical name “SampleDMM” point to the
new instrument’s Driver Session.

This is what the code for the example used in this guide would look like using and
IVI-C class driver.

static ViReal64 reading;

static ViSession session;

IviDMM_InitWithOptions ("SampleDMM", VI_FALSE,

VI_TRUE,"Simulate=1", &session);

IviDMM_ConfigureMeasurement (session, IVIDMM_VAL_DC_VOLTS,
1.5, 0.001);

83 	

IviDMM_ConfigureTrigger (session, IVIDMM_VAL_IMMEDIATE,
0.01);

IviDMM_Read (session, 1000, &reading);

printf ("%f", reading);

IviDMM_close (session);

Editing the Configuration Store
If you installed the IVI Shared Components in the default location, you will find the
Configuration Store information in a file named IviConfigurationStore.xml in
C:\Program Files\IVI\Data. Recent versions of Microsoft Internet Explorer can
display .xml files. If you double-click on the file, a copy of Internet Explorer should
start and you can view the contents of the file.

But we do mean view, not edit; you should use an IVI configuration utility or the IVI
Configuration Store API to make changes to the Configuration Store file. You can
usually obtain these utilities with your IVI driver, instrument, or ADE.

Important! Never make changes directly to the Configuration Store file.
Instead use an IVI configuration utility or the IVI Configuration Store API.
The configuration server provides much more functionality than it is possible to
describe here. For more information, see the IVI Configuration Server specification
at http://ivifoundation.org/specifications/default.aspx or contact your IVI provider.

Future Development of IVI

One feature of IVI that gives it an advantage over other instrument drivers is simply
that it’s still actively evolving. Current IVI work focuses on the following:

• Keeping up-to-date with technology, including 64-bit integers and new Windows
operating system compatibility;

• Keeping up-to-date with advances in test and measurement, including LXI
technology;

• Developing new class specifications for digitizers, counter timers, and synthetic
instruments

• Developing a .NET standard that will optimize IVI drivers for use in .NET.

IVI Drivers in Action

IVI Getting Started Guide contains a single example in many different ADEs. You
probably work primarily in a single ADE but would benefit from seeing other
examples that use IVI drivers. Examples are available from two primary sources:

1 Vendors who provide IVI drivers frequently show examples of their use in test
applications on their Web site. Visit the vendor’s site and search for “IVI
drivers” to find information on and examples of driver use.

84 	

2 Several vendors include examples as part of driver installation. For the Agilent
34401A driver (from Agilent Technologies) we use in some of the examples
throughout the guide a folder, located at C:\Program Files\IVI\Drivers\Agilent
34401\Examples, contains examples that show its use in a variety of different
environments.
Finally, contact your driver vendor for help. Even if the vendor hasn’t published
examples online or included them during installation, they may have samples that
you can use to build a program.

