- ,-
IVI FOUNDATION

Getting Started Guide

Your Guide to Getting
Started with IVI Drivers

Revision 1.3

© Copyright IVI Foundation, 2015
All rights reserved

The IVI Foundation has full copyright privileges of the VI Getting Started Guide.
For persons wishing to reference portions of the guide in their own written work,
standard copyright protection and usage applies. This includes providing a
reference to the guide within the written work. Likewise, it needs to be apparent
what content was taken from the guide. A recommended method in which to do
this is by using a different font in italics to signify the copyrighted material.

Introduction

Purpose

Welcometo IVIGetting Started Guide. This guide introduces key concepts about
IVIdrivers and shows you how to create a short program to perform a
measurement. The guide also provides a briefintroduction to several advanced
topics.

IVI Getting Started Guideis intended forindividuals who write and run programs
to controltest-and-measurementinstruments. As you develop testprograms, you
face decisions about how you communicate with the instruments. Some of your
choices include Direct /O, VXIplugé&play drivers, or [Vl drivers. If you are new to
using IVI drivers orjust want a quick refresher on how to get started, IVI Getting
Started Guide canhelp.

IVIGetting Started Guide showsyouthatIVIdrivers canbe straightforward, easy-
to-use tools. IVl drivers provide a number of advantages that can save time and
money during development, while improving performance as well. Whether you are
starting a new program or making improvements to an existing one, you should
consider the use of VI drivers to develop your test programs.

So considerthis the “hello, instrument” guide for IVl drivers. If you recall, the “hello
world” program, which originally appearedin Programmingin C: A Tutorial, simply
prints out “hello, world.” The “hello, instrument” program performs a simple
measurementonasimulatedinstrumentandreturnsthe result. We think you'llfind
that far more useful.

Why UseanlInstrumentDriver?
Tounderstand the benefits of IVI drivers, we need to start by defining instrument
drivers in generaland describing why they are useful. Aninstrumentdriveris a set
of software routines that controls a programmable instrument. Each routine
correspondsto a programmatic operation, such as configuring, writing to, reading
from, and triggering the instrument. Instrumentdrivers simplify instrument control
and reduce test program development time by eliminating the need to learn the
programming protocol for each instrument.

Startinginthe 1970s, programmers used device-dependentcommands for
computercontrolofinstruments. Butlack of standardizationmeanteventwodigital
multimeters from the same manufacturer might notuse the same commands. In
the early 1990s a group of instrument manufacturers developed Standard
Commandsfor Programmable Instrumentation (SCPI). This defined setof
commands for controlling instruments uses ASCII characters, providing some

Why IVI?

basic standardization and consistency to the commands used to control
instruments. For example, when you want to measure a DC voltage, the
standard SCPI command is “MEASURE : VOLTAGE : DC?".

In 1993, the VXlplugé&play Systems Alliance created specifications forinstrument
drivers called VXlplug&playdrivers. Unlike SCPI, VXIplug&play drivers do not
specify how to control specificinstruments; instead, they specify some common
aspects of an instrument driver. By using a driver, you can access the instrument
by calling a subroutine in your programming language instead of having to format
and send an ASCl| string as you do with SCPI. With ASCII, you have to create and
send the instrument the syntax “MEASURE : VOLTAGE : DC?”, thenread back a
string, and build itinto a variable. With a driver you can merely call a function called
MeasureDCVoltage() and passit a variable to return the measured voltage.

Although you still need to be syntactically correct in your calls to the instrument
driver, making calls to a subroutine in your programming language is less error
prone. Ifyou have been programming to instruments withouta driver, then you are
probably alltoofamiliarwith huntingaround the programming guide tofind theright
SCPI command and exact syntax. You also have to deal with an I/O library to
format and send the strings, and then build the response string into a variable.

The VXIplug&playdrivers do not provide acommon programming interface. That
means programming a Keithley DMM using VXlplug&play still differs from
programming a Keysight DMM. Forexample, the instrumentdriver interface for
one may be ke2000_read while anothermay be ag34401_getorsomething
even farther afield. Withoutconsistency acrossinstruments manufactured by
different vendors, many programmers still spentalotoftimelearning each
individual driver.

Tocarry VXlplugé&play drivers a step (or two) further, in 1998 a group ofend users,
instrumentvendors, software vendors, system suppliers,and systemintegrators
joined together to form a consortium called the Interchangeable Virtual Instruments
(IV1) Foundation. If you look at the membership, it’s clear that many of the
foundation members are competitors. But all agreed on the need to promote
specifications forprogrammingtestinstrumentsthatprovide better performance,
reduce the cost of program developmentand maintenance, and simplify
interchangeability.

Forexample, foranyIVIdriver developed fora DMM, the measurementcommand
is viDmmMeasurement.Read, regardless of the vendor. Once you learn how to
program the commands specified by [VIfor the instrument class, you can use any
vendor’sinstrumentand notneed to relearn the commands. Also commands that
are common to all drivers, such as Initialize and Close, are identical regardless of
the type of instrument. This commonality lets you spend less time browsing
through the help files in order to program an instrument, leaving more time to
get your job done.

That was the motivation behind the development of IVIdrivers.The VI
specifications enable drivers with a consistent and high standard of quality,
usability, and completeness. The specifications define an open driver architecture,
asetofinstrumentclasses, and shared software components. Together these
provide consistency and ease of use, as well as the crucial elements needed for
theadvancedfeatures|VIdrivers support:instrumentsimulation, automaticrange
checking, state caching, and interchangeability.

The IVIFoundation has created VI class specifications that define the capabilities

fordrivers for the following thirteen instrument classes:

Class IVI Driver
Digital multimeter (DMM) IviDmm
Oscilloscope IviScope
Arbitrary waveform/function generator IviFgen

DC powersupply IviDCPwr
AC power supply IVIACPwr
Switch IviSwtch
Power meter IviPwrMeter
Spectrum analyzer IviSpecAn
RF signalgenerator IVIRFSigGen

Upconverter IviUpconverter
Downconverter IviDownconverter
Digitizer IviDigitizer
Counter/timer IviCounter

IVIClass Compliantdrivers usually alsoinclude numerous functions thatare
beyond the scope of the class definition. This may be because the capability is
not common to allinstruments of the class or because the instrument offers
some control thatis more refined than what the class defines.

IVl also defines custom drivers. Custom drivers are used for instruments that are
not members of a class. For example, there is not a class definition for network
analyzers, so a network analyzer driver must be a custom driver. Custom drivers
provide the same consistency and benefits described below for an IVI driver,
exceptinterchangeability.

IVIdrivers conform to and are documented according to the VI specifications and
usually display the standard IVl logo.

Note: For more information on the types of IVI drivers, refer to Chapter 10,
Advanced Topics.

Why Use an IVIDriver?
Why choose IV drivers over other possibilities? Because VI drivers can increase
performance and flexibility formore intricate testapplications. Here are afew of the
benefits:

Consistency — VI drivers all follow a common model of how to control the
instrument. That saves you time when you need to use a new instrument.

Ease of use — IVl drivers feature enhanced ease of use in popular Application
Development Environments (ADEs). The APIs provide fast, intuitive access to
functions. IVI drivers use technology that naturally integrates in many different
software environments.

Quality — VI drivers focus on common commands, desirable options, and
rigorous testing to ensure driver quality.

Simulation - VI drivers allow code development and testing even when an
instrumentis unavailable. Thatreduces the need for scarce hardware resources
and simplifies test of measurement applications. The example programs in this
document use this feature.

Range checking — VI drivers ensure the parameters you use are within
appropriate rangesforaninstrument.

State caching — |Vl drivers keep track of an instrument’s status so that /O is only
performed when necessary, preventing redundant configuration commands from
being sent. This can significantlyimprove test system performance.

Interchangeability — VI drivers enable exchange of instruments with minimal
code changes, reducing the time and effort needed to integrate measurement
devicesintonew orexistingsystems. The [VIclass specifications provide syntactic
interchangeability but may not provide behavioral interchangeability. In other
words, the program may run on two different instruments but the results may
not be the same due to differences in the way the instrument itself functions.

Flavors of IVIDrivers
To support all popular programming languages and development environments, VI
drivers provide either an IVI-C or an IVI-COM (Component Object Model) API.
Driver developers may provide either or both interfaces, as well as wrapper
interfaces optimized for specific development environments.

Although the functionality is the same, IVI-C drivers are optimized foruse in ANSI
C development environments; IVI-COM drivers are optimized for environments
that support the Component Object Model (COM) such as the .NET
programming environment. [VI-C drivers extend the VXlplugé&playdriver
specification and theirusage is similar. IVI-COMdrivers provide easy accessto
instrumentfunctionality through methods and properties.

The getting started examples communicate with the instruments using the
Virtual Instrument Software Architecture (VISA) I/O library, awidely used
standard library forcommunicating with instruments from a personal computer.
The VISA standard is also provided by the IVI Foundation.

Shared Components
Tomake it easier for you to combine drivers and other software from various
vendors, the IVIFoundation members have cooperated to provide common
software components, called I1VI Shared Components. These components provide
services to drivers and driver clients that need to be common to all drivers. For
instance, the IVl Configuration Serverenables administration of system-wide
configuration.

Important! You mustinstall the IVIShared Components before an IVIdriver
canbeinstalled.

The IVI Shared Components can be downloaded from vendors’ web sites as well
as from the IVI Foundation Web site.

Todownload and install shared components from the VI Foundation Web site:
1 Go to the IVI Foundation Web site at http://www.ivifoundation.org.

2 Locate Shared Components.

3 Choose the IVI Shared Components msi file for the Microsoft Windows Installer
package or the IVl Shared Components exe for the executable installer.

DownloadandInstalllVIDrivers
Afteryou’veinstalled Shared Components, you'rereadytodownloadandinstallan
IVIdriver. For most ADEs, the steps to download and install an VI driver are
identical. For the few that require a different process, the relevant chapterin IVI
Getting Started Guide provides the information youneed.

IVI Drivers are available from your hardware or software vendor’s web site or by
linking to them from the VI Foundation web site.

Tosee the list of drivers registered with the IVl Foundation, go to
http://www.ivifoundation.org.

Familiarizing Yourself with the Driver
Although the examples in IVI Getting Started Guide use a DMM driver, you will
likely employ a variety of IVI drivers to develop test programs. To jumpstart that
task, you’llwanttofamiliarize yourselfquickly with drivers youhaven’tusedbefore.
Most ADEs provide a way to explore VI drivers to learn their functionality. In each
chapter, where applicable, we add a note explaining how to view the available
functions. In addition, browsing an IVI driver’s help file often proves an excellent
way to learn its functionality.

Examples

As we noted above, each example chapterin IVI Getting Started Guide shows you how to use an
IVI driver to write and run a program that performs a simple measurementon a simulated
instrumentand returns the result. The examples demonstrate common steps using VI drivers.
Where practical, every example includes the steps listed below:

¢ Download and Install the IVI driver— covered in the Download and Install IVI Drivers
section above.

* Determine the VISA address string— Examples in Getting Started with IVI Drivers use the
simulate mode, so we chose the address string GPIB0::23::INSTR, often shown as
GPIB::23. Ifyou need to determine the VISA address string for yourinstrument and the ADE
does not provide it automatically, use an lO application, such as National Instruments
Measurementand Automation Explorer (MAX)orKeysight Connection Expert.

* Reference the driver or load driver files — For the examples in this guide, the driver is the
IVI-COM/IVI-C Version 1.2.2.0 for 34401A, October 2008 (from Keysight
Technologies) ... or the Keysight 34401A IVI-C driver, Version4.5,January2015
(from National Instruments).

* Create aninstance of the driverin ADEs that use COM — For the examples in the IVIguides,
thedriveristhe Agilent34401A (IVI-COM) or HP 34401 (IVI-C).

* Writethe program. The programs in this series all perform the following steps:

® |Initialize the instrument — Initialize is required when using any IVl driver. Initialize
establishes a communication link with the instrumentand must be called before the
program can do anything with the instrument. The examples set resettotrue, ID
query tofalse, and simulate to true.

6

Setting reset to true tells the driver to initially reset the instrument. Setting the ID
query to false prevents the driver from verifying that the connected instrument is
the one the driver was written for. Finally, setting simulate to true tells the driver
that it should not attempt to connect to a physical instrument, but use a simulation
of the instrument.

* Configuretheinstrument—The examples setarange of 1.5 volts and a resolution of
0.001 volts (1 millivolt).

® Access aninstrument property — The examples set the trigger delay to 0.01
seconds.

* Setthereading timeout—The examplesset the reading timeout to 1000
milliseconds (1 second).

* Takeareading

* Closetheinstrument—This step is required when using any IVl driver, unlessthe
ADE explicitly does not require it. We close the session to free resources.

Important! Close maybethemostcommonly missedstepwhenusingan IVidriver. Failing
to do this could mean that system resources are not freedup and your program may
behave unexpectedly on subsequent executions.

® Checkthedriverforany errors.
* Displaythereading.
Note: Examples that use a console application do not show the display.
Now that you understand the logic behind IVI drivers, let’s see how to get started.

Using IVIwith Visual C++

The Environment
Microsoft Visual C++ is a software development environment for the C++
programming language and is available as part of Microsoft Visual Studio.
Visual C++ allows you to create, debug, and execute conventional applications
as well as applications that target the .NET Framework.

Example Requirements
* Visual C++
* MicrosoftVisual Studio2010

* [VI-COM: Agilent 34401A IVI-COM, Version 1.2.2.0, October 2008 (from
Agilent Technologies); or

* Keysight 34401A IVI-C driver, Version 4.5, January 2015 (from
National Instruments)

* Keysight IO Libraries Suite 16.1 or greater
® National Instruments IVI Compliance Package version 4.0 or later

Download andInstallthe Driver

Ifyou have notalready installed the driver, go to the vendor Web site and follow the
instructions todownload and install it.

Since Visual C++ supports both IVI-COM and IVI-C drivers, this example is written
two ways, first to show how to use an IVI-COM driver in Visual C++, and second to
show how to use an IVI-C driver in Visual C++.

Note: Ifyoudonotinstallthe appropriate instrumentdriver, the project will not build
because the referenced files are not included in the program. If you need to
download andinstall a driver, you do notneedto exit Visual Studio. Installthe driver
and continue with your program.

UsingIVI-COMinC++

The following sections show how to get started with an IVI-COM driver in Visual
C++

Create aNewProjectand Importthe Driver Type Libraries

Touse an IVI Driverin a Visual C++ program, you must provide the path to the
type libraries it uses.

1 Launch Visual Studio 2010 and create a Visual C++ Win32 Console Application
with the name “lviDemo”. Use the default settings.

Note: The program already includes some required code, including the
standard header file:

#include "stdafx.h"
2 In Solution Explorer, right click on the “lviDemo” project node and click on
“Properties”. This will open the “IviDemo Property Pages” dialog.

3 Inthe tree view on the left of the dialog, expand “Configuration Properties”,
then click on “VC++ Directories”.

4 Locate the “Include Directories” row in the right hand pane and click on the
drop down icon in the column that contains the directory paths. Click on
“<Edit...>".

5 Add the following two entries to your path.

The first entry will point to the default directory for IVI drivers. On 32-bit
Windows, use:

“C:\Program Files\IVI Foundation\IVI\Bin”
On 64-bit Windows, use:
“C:\Program Files (x86)\IVI Foundation\IVI\Bin”

The second entry points to the VISA DLL that many drivers
require:

“$ (VXIPNPPATH) VisaCom”

Note: The second entry will point to the correct VISA COM directory regardless
of whether you are operating with 32-bit or 64-bit Windows.

6 Click OKtwice tosave changesand exit the “lviDemo Property Pages” dialog.

Import COM Type Libraries
COM type libraries must be imported before they can be accessed. To import
the type libraries, type the following statements following the header file
reference:

#import <IviDriverTypeLib.dll> no namespace
#import <IviDmmTypeLib.dll> no namespace
#import <GlobMgr.dll> no namespace

Initialize COM
1

#import <Ag34401.d11> no namespace

Note: The #import statements access the driver type libraries used by the
Agilent 34401 DMM. The no_namespace attribute allows the code to access the
interfaces inthe type libraries from the global namespace.

Atthis pointthe Visual C++ editor may flag the # import statements as errors. To
fix the errors, select “Rebuild Solution” from the Build menu.

Initialize the COM library, and check for errors. Add the following lines at the
beginning of the _tmain function (immediately before the return statement):

HRESULT hr = ::CoInitialize (NULL) ;
if (FAILED (hr)) exit (1) ;

To close the COM library before exiting, type the following line at the end of
your code, right before the return line:

::CoUninitialize();

Create an Instance of the Driver

Tocreate an instance of the driver, type

{
IIviDmmPtr dmm(uuidof (Agilent34401));
}
Note: This creates a smart pointer that provides easy access to the COM object.

You are now ready to write the program to control the simulated instrument.

Initialize the Instrument

You can now write the main constructs for your program.
Below the smart pointer statement, type
dmm->Initialize ("GPIB::23", false, true, "simulate=true");

Note: As soon as you type ->, Intellisense displays options
and helps ensure you use correct syntax and values.

Configure the Instrument

Toset the range to 1.5 volts and resolution to 0.001 volts, type

dmm->Configure (IviDmmFunctionDCVolts, 1.5, 0.001);

10

Setthe TriggerDelay
Toset the trigger delay to 0.01 seconds, type

dmm->Trigger->Delay = 0.01;

Set the Reading Timeout/Display the Reading
Createavariabletorepresentthereading, makeareadingwithatimeoutof1second
(1000 milliseconds), and display the result to the console:

double reading = dmm->Measurement->Read (1000) ;

wprintf (L"Reading: %g\n", reading);

Error Checking
Tocatch errors in the code, activate error checking.

1 Surround the preceding statements with a try block. Add the following lines
before the call to the Initialize method:

try
{

2 Process errors in a catch block. Add the following lines after the call to the
wprintf method that follows the Read method:

}
catch (_com error e)
{

wprintf (L"Error: %s", e.ErrorMessage());

Close the Session
Close out the instance of the driver and free resources. Add the following line
after the closing bracket of the catch block:

dmm->Close () ;

ViewtheResults
Prompt the user to press any key to continue. Without these lines, the console
window would immediately close before the user could view the information
that was written to it. Add the following lines immediately before the return
statement:

printf ("\nDone - Press any key to exit");

getchar () ;

1

Complete Source Code

The complete source code for the lviDemo.cpp file is shown below:

// IviDemo.cpp : Defines the entry point for the console
application.

//
#include "stdafx.h"

#import <IviDriverTypeLib.dll> no namespace
#import <IviDmmTypeLib.dll> no namespace
#import <GlobMgr.dll> no namespace

#import <Ag34401.dl11> no namespace

int tmain(int argc, TCHAR* argvl[])

{
HRESULT hr = ::ColInitialize (NULL);
if (FAILED (hr)) exit (1) ;

IIviDmmPtr dmm(uuidof (Agilent34401));

try
{
dmm->Initialize ("GPIB::23", false, true,
"simulate=true");
dmm->Configure (IviDmmFunctionDCVolts, 1.5,

0.001);
dmm->Trigger->Delay = 0.01;
double reading = dmm->Measurement->Read (1000) ;
wprintf (L"Reading: %g\n", reading);
}
catch (_com error e)
{
wprintf (L"Error: %$s", e.ErrorMessage());
}
dmm->Close () ;
}
::CoUninitialize();
printf ("\nDone - Press any key to exit");

getchar () ;

12

return 0;

Buildand Runthe Application
Build your application and run it to verify it works properly.

1 From the Build menu, select “Build”, and click “Rebuild Solution”.
2 From the Debug menu, select “StartDebugging” to run the application.

Using IVI-C in Visual C++
The following sections show to get started with IVI-C in Visual C++.

Create aNewProjectand Importthe Driver Type Libraries

To use an IVI-C Driver in a Visual C++ program, you must provide paths to the

header files and libraries it uses.
1 Launch Visual Studio 2010 and create a Visual C++ Win32 Console
Application with the name “lviDemo2”. Use the default settings.

Note: The program already includes some required code, including the

standard header file:

#include “stdafx.h”
2 In Solution Explorer, right click on the “IviDemo2” project node and click on
“Properties”. This will open the “lviDemo2 Property Pages” dialog.

3 Inthe tree view on the left of the dialog, expand “Configuration Properties”,
then click on “VC++ Directories”.

4 Locate the “Include Directories” row in the right hand pane and click on the
drop down icon in the column that contains the directory paths. Click on
“<Edit...>".

5 Add the following two entries to your path. The first entry will point to the default
directory for IVI drivers.

On 32-bit Windows, use:
“C:\Program Files\IVI Foundation\IVI\Include”

On 64-bit Windows, use:
“C:\Program Files (x86)\IVI Foundation\IVI\Include”

The second entry points to the VISA DLL that many drivers require:

“$ (VXIPNPPATH) WinNT\include”
Note: The second entry will point to the correct VISA directory regardless of
whether you are operating with 32-bit or 64-bit Windows.

13

6 Locate the “Library Directories” row in the right hand pane and click on the drop
down icon in the column that contains the directory paths. Click on “<Edit...>".

7 Add the following two entries to your path. The first entry will point to the default
directory for IVl drivers.

On 32-bit Windows, use:

“C:\Program Files\IVI Foundation\IVI\Lib\msc”

On 64-bitWindows, use:

“C:\Program Files (x86)\IVI Foundation\IVI\Lib\msc”
The second entry points to the VISA DLL that many drivers require:

“$ (VXIPNPPATH) WinNT\lib\msc”
Note: The second entry will point to the correct VISA directory regardless of
whether you are operating with 32-bit or 64-bit Windows.

8 Next, expand “Linker” in the tree view on the left of the “lviDemo2 Property
Pages” dialog, then click on “Input”.

9 Locate the “Additional Dependencies” row in the right hand pane and click on
the drop down icon in the column that contains the list of .lib files. Click on
“<Edit...>".

10 Add the following library file to the list:
“Ag34401.11ib”

11 Click OK twice to save changes and exit the “lviDemo2 Property Pages” dialog.

Include Driver Header
Toadd the Ag34401 instrument driver header file to your program, type the
following statementfollowing the existing headerfile reference:

#include “Ag34401.h”
Select “Rebuild Solution” from the Build menu.

Declare Variables
Declare the program variables. Add the following lines at the beginning of the
_tmainfunction (immediately before the return statement):

ViSession session;
ViStatus error = VI SUCCESS;
ViReal64 reading;

14

Define Error Checking
Next define error checking for your program. First you will define a macro to
catch the errors. It is better to define it once at the beginning of the program
that to add the logic to each of your program statements. After the #include
statements, type the following lines:

#ifndef checkErr
#define checkErr (fCall) \

if (error = (fCall), (error = (error < 0) ? error
VI_SUCCESS)) \

{goto Error;} else error = error

#endif

Next add code to handle any errors that occur. Add the following lines
before the return statement:

Error:
if (error != VI SUCCESS)
{
ViChar errStr[2048];
Ag34401 GetError (session, é&error, 2048,
errStr) ;

printf ("Error!", errStr);

}

Note: Including error handling in your programs is good practice. This code
checks for errors in your program.

Initialize the Instrument

Toinitialize the instrument, add the following Initialize with Options function right
afterthe variable declarations you added in the previous section:

checkErr (Ag34401 InitWithOptions
("GPIB::23::INSTR",VI FALSE, VI TRUE,
B - "Simulate = 1",
&session));
This initializes the instrument with the following parameters:
* GPIB0::23::INSTRisthe Resource Name (instrumentat GPIB address 23).
* VI_FALSE indicatesthatan ID Query should not be performed by this function.
¢ VI_TRUEresetsthedevice.
¢ Simulate=1is the Options parameter that sets the driver to simulation mode.

® &session assigns the Instrument Handle to the variable “session” defined
above.Configure the Instrument

15

Configure the Instrument

To set the range to 1.5 volts and resolution to 0.001 millivolts, type:
checkErr (Ag34401 ConfigureMeasurement (session,
AG34401 VAL DC_VOLTS, 1.5, 0.001));

Setthe Triggerand Trigger Delay
Tosetthe trigger source to immediate and the trigger delay to 0.01 seconds, type:

checkErr (Ag34401 ConfigureTrigger (session,
AG34401 VAL IMMEDIATE, 0.01));

Set the Reading Timeout/Display the Reading
Totake areading from the instrument and to set the reading timeout to 1 second
(1000 ms) type, and display the result using the printf function:

checkErr (Ag34401 Read (session, 1000, &reading);

printf ("Reading = %f", reading);

Note: The Read function takes a reading from the instrument and assigns the
result to the variable “reading” defined above.

Close the Session
To close out the instance of the driver and free resources, add the following
lines immediately before the return statement:

If (session)

Ag34401 Close(session);

Viewthe Results
Prompt the user to press any key to continue. Without these lines, the console
window would immediately close before the user could view the information that
was written to it. Add the following lines immediately before the return statement:

printf ("\nDone - Press any key to exit");
getchar () ;

Complete Source Code

The complete source code for the lviDemo2.cpp file is shown below:

16

#include "stdafx.h"
#include <Ag34401.h>

#ifndef checkErr

#tdefine checkErr(fCall) \

if (error = (fCall), (error = (error < @) ? error :
VI_SUCCESS)) \

{goto Error;} else error = error

#tendif

int _tmain(int argc, _TCHAR* argv[])
{

ViSession session;

ViStatus error = VI_SUCCESS;

ViReal64 reading;

checkErr(Ag34401_InitWithOptions ("GPIB::23::INSTR",
VI_FALSE, VI_TRUE,

"Simulate=1", &session));

checkErr(Ag34401_ConfigureMeasurement (session,

AG34401_VAL_DC_VOLTS,
1.5, 0.0001));

checkErr(Ag34401_ConfigureTrigger (session,
AG34401_VAL_IMMEDIATE, 0.01));

checkErr(Ag34401_Read (session, 1000, &reading));

printf ("Reading = %f", reading);

Error:
if (error != VI_SUCCESS)
{
ViChar errStr[2048];
Ag34401_GetError (session, &error, 2048, errStr);
printf ("Error!", errStr);
}

if (session)
Ag34401_close (session);

printf("\nDone - Press any key to exit");
getchar();

return 9;

17

Buildand Runthe Application

Build your application and run it to verify it works properly.
1 From the Build menu, select “Build”, and click “Rebuild Solution”.

2 From the Debug menu, select “StartDebugging” to run the application.

Microsoft® and Visual Studio® are registered trademarks of Microsoft Corporation
inthe United States and/or other countries.

18

19

Using IVl with Visual C# and
Visual Basic .NET

The Environment
C#and Visual Basic are object-oriented programming languages developed by
Microsoft. They enable programmers to quickly build a wide range of applications
forthe Microsoft .NET platform. This chapter provides detailed instructions in C#
as well as the code for Visual Basic. NET. If you are using Visual Basic 6.0, we
recommend another guide in this series, Getting Started with IVI Drivers: Your
Guide to Using IVI with Visual Basic 6.

Note: One of the key advantages of using C# and Visual Basic in the Microsoft®
Visual Studio® Integrated Development Environment is IntelliSense™.
InstelliSense is a form of autocompletion for variable names and functions and a
convenient way to access parameterlists and ensure correct syntax. The feature
also enhances software development by reducing the amount of keyboard input
required.

Example Requirements
* VisualC#
* MicrosoftVisual Studio2010

* Agilent34401AIVI-COM, Version 1.2.2.0, October2008 (from Agilent
Technologies)

* AgilentlOLibraries Suite 16.1

Download andInstallthe Driver
Ifyou have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it. You can also refer to Chapter 1, Download
and Install IVI Drivers, for instructions.

This example uses an IVI-COM driver. IVI-COM is the preferred driver for C#, but
IVI-Cis also supported.

20

Create aNew Projectand Reference the Driver
Begin by creating a new project, and add a reference to the IVI Driver.

1 Launch Visual Studio and create a new Console Application in Visual C# by
selecting File -> New -> Project and selecting a Visual C# Console Application.

Note: When you select new, Visual Studio will create an empty program the
includes some necessary code, including using statements. Keep this required
code.

For the next steps you will need to ensure that the "Program.cs" editor window
is visible and the Solution Explorer is visible.
2 Select Project and click Add Reference. The Add Reference dialog appears.
3 Select the COM tab. All IVI drivers begin with IVI. Scroll to the IVI section and
select IVI Agilent 34401 (Agilent Technologies) 1.2 Type Library. Click OK.

Note: If you have not installed the IVI driver, it will not appear in this list. You must
close the Add Reference dialog, installthe driver, and select Add Reference again
for the driver to appear.

21

CrTowmmes W wa B

JNET | CcoM |Projects | BrowseI Recentl

CAPROGRA~2\IVIFOU~1\IVI\Bin\Ag34401.dlI

Ivi Configuration Server 1.6 Type.. 16
IviCounter 1.0 Type Library (x64) 1.0
IiDCPwr 2.0 Type Library (xG4) 20
IviDigitizer 1.0 Type Library (x64) 1.0
IviDmm 3.0 Type Library (64) 30
IviDownconverter 1.0 Type Librar... 1.0
IviDriver 1.0 Type Library (x64) 10

C:\Program Files (@6)\IVI Foundation\IVI\Bin\AgM3018.dIl
C:\Program Files (x86\IVI Foundation\IVI\Bin\Ag3186.dlI
Ci\Program Files (@6)\IVI Foundation\IVI\Bin\ AgM3302.dII
C:\Program Files (x86)\IVI Foundation\IVI\bin\AgiM333x.dll

Ci\Program Files (@6\IVI Foundation\IVI\Bin\AgiM922x.dll @

C:\Program Files (x86\IVI Foundation\IVI\Bin\AgiM3351.dll
Ci\Program Files (@6)\IVI Foundation\IVI\Bin\ AgM93560.4II
C:\Program Files (x@6\IVI Foundation\IVI\Bin\Agh3361.dlI
Ci\Program Files (B6\IVI Foundation\IVI\Bin\AgiM9292.dlI
C:\Program Files (86\IVI Foundation\IVI\Bin\AgM350x.dll
C:\Program Files (@6\IVI Foundation\IVI\Bin\ AgM250xSC.dll
C:\Program Files (x86)\IVI Foundation\IVI\Bin\AgMD1.dll
Ci\Program Files (@6)\IVI Foundation\IVI\Bin\AgMWSwitch.dll
C:\Program Files (x86)\IVI Foundation\IVI\Bin\AgN2102.dlI
Ci\Program Files (:86)\IVI Foundation\IVI\Bin\IviConfigServer.dll
C:\Program Files (B6\IVI Foundation\IVI\Bin\IviCounterTypelib.dll
Ci\Program Files (@6\IVI Foundation\IVI\Bin\IviDCPwrTypelLib.dll
C:\Program Files (B6\IVI Foundation\IVI\Bin\IviDigitizerTypelib.dll
Ci\Program Files (86)\IVI Foundation\IVI\Bin\IviDmmTypeLib.dll
C:\Program Files (86\IVI Foundation\IVI\Bin\IviDownconverterTypelit
C:\Program Files (}86\IVI Foundation\IVI\Bin\IviDriverTypeLib.dll

l Component Name | TypeLib Version Path

i VI Agilent34401 1.2 TypeLibrary 1.2
Vi AgM2018 1.1 Type Library 11
VI AgM2186 1.0 Type Library 10
Vi AgM9302 1.0 Type Library 10
VI AgM©33x 1.0 Type Library 1.0
Vi AgM933x 1.1 Type Library 11
VI AgM@351 1.0 Type Library 1.0
VI AgM9360 1.0 Type Library 10
VI AgM9361 1.0 Type Library 1.0
VI AgM9392 1.0 Type Library 10
VI AgM9850x 0.1 Type Library 01
VI AgMO50xSC 0.1 Type Library 01
M AgMD1 1.1 Type Library 11
VI AgMWSwitch 1.0 Type Library 10
M AgN2102 1.0 Type Library 1.0

4

LIS] [

=

Note: The program looks the same as it did before you added the reference, but
the driver is now available for use. To see the reference, select View and click
Solution Explorer. Solution Explorerappears and lists the reference.

22

Create an Instance of the Driver
Toallow your program to access the driver without specifying the full path, type the
following line immediately below the other using statements:
using Agilent.Agilent34401.Interop;

Note: As soon as you type the A for Agilent, IntelliSense lists the valid inputs.

LT r T Rl Source Control Explorer Object Browser

ﬁgConsoleApplication7.Program -léQ Ma
Blusing System;
using System.Collections.Generic;
using System.ling;
using System.Text;
using Agilent.l

[{} Agilent34401 ,_[namespace Agilent.Agilent34401

X0G|00I|l -

Elnamespace ConsorcRppricacroiy
K
B class Program
| o
B static void Main(string[] args)
1
¥
¥

Congratulations! You may now write the program to control the simulated
instrument.

Note: Toviewthe functionsandparametersavailable inthe instrumentdriver, right-
click the library in the References folder in Solution Explorer and select View in
Object Browser.

23

>« Accessibility [4.0.0.0]
4 .3 Agilent,Agilent34401.Interop
4 {} Agilent.Agilent3d401.Interop

a4 =0 Agilent34401

4 [C5j Base Types

b =0 JAgilent34401

p &9 Agilent34401ApertureTimeUnitsEnum
b =P Agilent34401AutoZeroEnum
b % Agilent34401Class
b @9 Agilent34401dBmRefResistanceEnum
b & Agilent34401ErrorCodesEnum
p = Agilent34401FunctionEnum
b &P Agilent34401inputTerminalEnum
b = Agilent34401MathFunctionEnum
p &9 Agilent34401MeasCompleteDestEnum
b & Agilent34401ResolutionEnum
b =2 Agilent34401SampleTriggerEnum
b &P Agilent34401StatusRegisterEnum
b & Agilent34401StatusSubRegisterEnum
b = Agilent34401TriggerSlopeEnum
b o7 Agilent34401TriggerSourceEnum
b =2 IAgilent34401
p =0 IAgilent34401AC
b =9 JAgilent34401ACCurrent
b =2 IAgilent34401ACVoltage
p =0 IAgilent34401Advanced
b = IAgilent34401Calibration
b =0 IAgilent34401DCCurrent
b =0 IAgilent34401DCVoltage
b =2 IAgilent34401DCVoltageRatio
b 0 IAgilent34401Display
b =9 JAgilent34401Frequency
b =2 IAgilent34401Math
p =0 [Agilent34401Measurement
b =2 JAgilent34401MultiPoint
4

Initialize the Instrument

m

B AC
ﬁ ACCurrent

5 ACVoltage

? Advanced

2 Calibration
Z7 DCCurrent

% DCVoltage

% DCVoltageRatio
7 Display

& DriverOperation
7 Frequency

ZF Function

% Identity

27 Initialized

f IviDmm

' Math

1 Measurement
ﬁ: Resistance

4 Status

7 System

= Trigger

27 Utility

void Initialize(string ResourceName, bool IdQuery, bool Reset, [string
OptionString = null))
Member of Agilent.Agilent34401.Interop [Agilent34401

Summary:
Opens the IfO session to the instrument. Driver methods and properties that

You can now write the main constructs for your program. Create a variable to
representyourinstrumentand setthe Initialization parameters.

1 TypeAgilent34401 dmm = new Agilent34401();

2 Typedmm.Initialize (“GPIB::23”, false, true,
“simulate=true”);

Note: IntelliSense helps ensure you use correct syntax and values.

24

Source Control Explorer Object Browser Program.cs* X

jg ConsoleApplication7.Program - I 59 Main(string[] args)
Flusing System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Agilent.Agilent34401.Interop;

Flnamespace ConsoleApplication?

ki
Bl class Program
1
B= static void Main(string[] args)
1
Agilent34401 dmm = new Agilent34401();
dmm. Initialize(|
! I [void [Agilent34401.Initialize(string ResourceName, bool IdQuery, bool Reset, [strir
- } ¥ Opens the I/O session to the instrument. Driver methods and properties that access
- ResourceName: An IV] logical name or an instrument specific string that identifies

Configure the Instrument
Toset the range to 1.5 volts and the resolution to 1 millivolt, type

dmm.DCVoltage.Configure(1.5, 0.001);

Setthe Trigger Delay
Toset the trigger delay to 0.01 seconds, type

dmm.Trigger.Delay=0.01;

Set the Reading Timeout/Display the Reading
Create a variable to represent the reading and display the reading:

1 Typedouble reading;

25

2 Totrigger the multimeter and take a reading with a timeout of 1 second, type
reading = dmm.Measurement.Read(1000);
3 Type Console.WriteLine("The measurement is {0}", reading);

4 TypeConsole.ReadLine();

Close the Session
Toclose out the instance of the driver to free resources, type

dmm.Close () ;

Your final program should contain the code below:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using Agilent.Agilent34401.Interop;

namespace ConsoleApplicationl
{
class Program
{
static void Main(string[] args)
{
Agilent34401 dmm = new Agilent34401();
dmm.Initialize ("GPIB::23", false, true, "sim-
ulate=true");
dmm.DCVoltage.Configure (1.5, 0.001);
dmm.Trigger.Delay = 0.01;
double reading;
reading = dmm.Measurement.Read (1000) ;
Console.WritelLine ("The measurement is {0}",
reading);
Console.ReadLine() ;

dmm.Close () ;

26

Buildand Runthe Application
Build your application and run it to verify it works properly.

1 From the Build menu, click the name of your Console Application.
2 From the Debug menu, click Start Debugging.

Tips
The code for a Visual Basic console application in Visual Studio 2010 is almost
identical to the C# application:

Option Explicit On
Imports Agilent.Agilent34401.Interop
Module Modulel
Sub Main ()
Dim dmm As New Agilent34401

dmm.Initialize ("GPIB::23", False, True,
"simulate=true")

dmm.Function =
Agilent34401FunctionEnum.Agilent34401FunctionDCVolts

dmm.DCVoltage.Configure (1.5, 0.001)
dmm.Trigger.Delay=0.01
Dim reading As New Double
reading = dmm.Measurement.Read (1000)
dmm.Close ()
Console.WritelLine (“"The readingis {0}”, reading)
Console.ReadLine ()
End Sub
End Module
The main differences include the following:

* Touse Visual Basic, select Visual Basic in Project Types.
* Toenforce type checking, insert a line at the start of the code. Type
Option Explicit On
* This example also shows how to set an enumerated property. This property
assignment sets the DMM function to Voltage: Type

dmm.Function =
Agilent34401FunctionEnum.Agilent34401FunctionDCVolts

27

® Todimensionavariable fortheinstrumentandreading,use Dim dmmand Dim
reading.

Further Information
® Learn more about Visual C# at http://msdn.microsoft.com/vcsharp/.
* |earn more about Visual Basic at http://msdn.microsoft.com/vbasic/.

Microsoft® and Visual Studio® are registered trademarks of Microsoft Corporation
in the United States and/or other countries.

28

Using IVI with LabVIEW™

The Environment
NationallnstrumentsLabVIEW is agraphicaldevelopmentenvironmentforsignal
acquisition, measurement analysis, and data presentation. LabVIEW provides the
flexibility of a programming language with less complexity than traditional
development tools.

Example Requirements
* LabVIEW 2011 orlater

* [VI-C: Keysight 34401A IVI-C driver, Version 4.5, January 2015 (from
National Instruments)

* |VI-COM: Keysight 34401A IVI-COM/IVI-C driver, Version 1.2.5.0, April
2013 (from Keysight Technologies)

Note: These drivers may require an I/O library to be installed. Check the driver

vendor’s Web site for details.

Note: |VI-C driver requires the NI IVI Compliance Package to be installed.
Check National Instruments Web site for details.

Download andInstallthe Driver

Ifyou have notalready installed the driver, go to the vendor Web site and follow the
instructions to download and install it.

Since LabVIEW supports both IVI-C and IVI-COM drivers, this example is written
two ways, first to show how to use an IVI-C driver in LabVIEW, and second how to
use an [VI-COMdriverin LabVIEW.

Using IVI-C
AllIVI-C drivers provide a Dynamic Link Library (DLL) interface. While LabVIEW
providesthe CallLibrary FunctionnodetocallDLLs, manyVI-C drivers alsocome
with a LabVIEW wrapper that provides the familiar Vl interface to the driver’s
functions, making it easier to use in LabVIEW. If your IVI-C driver does nothave a
LabVIEW wrapper, you can create one using a free tool by clicking on LabVIEW
InstrumentDriverImportWizard at:

http://www.ni.com/devzone/idnet/development.htm.

Note: The functionality shown in this section is available in a LabVIEW example
supplied with the IVIdriver from National Instruments.

29

Create aVland Access the Driver

1
2

Launch LabVIEW.

From the File menu, select New VI. The Front Panel and Block Diagram
appear.

Right-click in the Block Diagram. The Functions palette appears.

Select the Instrument I/O subpalette and then the Instrument Drivers
subpallete. You can access all instrument driver Vis from this palette.

Click Instrument Drivers. Select hp34401a from the palette.
Select the hp34401a IVI driver from the palette.

Note: Ifthe driver you wantto use is not listed, download and install the driver, and
closeandrestartLabVIEW. The drivershould now appearinthe palette. The driver
palette allows you to browse the various VIs and functionality supported by the
driver.

P 1¥1 Demo (I¥1-C).vi Block Diagram

Measurement 1jO »
Vision and Motion L} m Instrument [/O
Mathematics L Instrument Drivers
Signal Processing Y [[(@l
Data Communication [Instrument Drivers
Connectivity) Instr Drivers hp34401a
Control Design & Simulation [[TIsa [pam] m_““
SignalExpress) S| et |
Express) VISA Aglent 34401 hp3440la
Addons »
Favorites »
User Libraries »

< Select aVl...

= Teststand >

Ele Edt View Project Operate Iooks Window Help
© [1n][@] [25] [oa]RP] 8 [130t Applcation Fort |~ |3~ T
X1 Functions Q search| °
Programming »
y =L
sl EH
Structures Array Cluster & Vari...
23] M| =1 [Er]|
>) ®
Numeric Fie /0 Boolean
E " v
B @
String Comparison Timing

A
E
o

3
®
z
&
£
&
i
g
3

Dial Application C....

¥
Ki

Synchronization Graphics & So... Report Gener...

30

Initialize the Instrument
1 Select Initialize With Options VI from the hp34401a palette and place it on the
Block Diagram.

File Edit View Project Operate Tools MWindow Help

@,g} @n ba B [of | 13pt Application Font |« ”!nv"'.'u:‘v|

[FFza401]

HoerIG

Errlios|

|~
v

2 Create constants and enter values for instrument resource name, ID Query,
Reset, and IVI option string:
* GPIB0::23::INSTRintheinstrumentresource namefield
® Falseinthe ID Queryfield
¢ Trueinthe Resetfield
¢ Simulate=1inthe Optionsfield

Note: Tocreate a constant, control, or indicator, right-click on the desired input
terminaland select Create.

31

Configure the Instrument

P I¥1 Demo (I¥I-C).vi Block Diagram * Q@@

File Edt View Project Operate Tools Window Help

@@ lba@] o [136t Appication Fort |~][~ |[Ta]

< GPIBO::23::INSTR [+]

1 From the Configuration subpalette, select Configure Measurement VI and
place it on the Block Diagram.

2 Create constants and enter values to set the resolution to 1 millivolt, the
function to DC Voltage, and the range to 1.5 volts:
® 0.001inthe Resolution field
¢ DC volts inthe Measurement Function field
* 1.5inthe Range field

3 Connectthe instrument handle and error terminals from Initialize With Options
VI to Configure Measurement VI.

4 From the Trigger subpalette, select Configure Trigger VI and place it on the
Block Diagram.

5 Connectresource name and error information from Configure Measurement VI
to Configure Trigger VI.

6 Create a constant and enter a value of 0.01 in the Trigger Delay field.

Note: You can also setthe Trigger Delay using a Property Node by replacing steps
4 & 5 with a property access as shown in the section “Setting a Property in an IVI-
C Driver’below.

Take the Reading
1 Return to the main hp34401a palette. From the Measurement subpalette,
select Read VI and place it on the Block Diagram.

2 Set the value for Timeout to 1 second (1000 ms). Enter 1000 in the Timeout
field.

32

3 Connect resource name and error information from Configure Trigger to Read
VI.

Display the Reading
Create anindicator for Reading from the terminal on the Read VI.

Close the Session
1 Returnto the main hp 34401a palette. Select Close VI and place it on the Block

Diagram.
2 Connect resource name and error information from Read VI to Close VI.

Note: LabVIEW compiles while developing, which lets you check the program
execution atanytime.

Add Error Checking
1 Return to the main functions palette. From the Dialog & User Interface
subpalette select Simple Error Handler VI and place it on the Block Diagram.

2 Connect the error information from Close VI to Simple Error Handler VI.

Run the Application
Yourfinal VI Block Diagram should contain the elements shown below. Torun your
VI:

1 Switch to the VI's Front Panel and click on the Run arrow to run the application.
2 The Reading indicator should display a simulated reading from the instrument.

P I¥I Demo (I¥I-C).vi Block Diagram
File Edt View Project Operate Tools MWindow Help

\Q\@Dﬁ [13pt Application Font |~ | (2o~ |[Ga~ | i

Resolution [0.001]
Measurement Function [DC Yolts |

Read

Timeout

[GPIB::23::INSTR |7}
IdQuery s
Reset

—Nﬁa“
L

O R R

Range [iﬂ
TriggerDelay

33

Setting a Property inan IVI-C Driver

Properties such as Trigger Delay can also be set (and read) with a property node.
This is importantin cases where a configuration function is not provided by the
driver.

Forexamplewe canreplace steps4 and 5 ofthe “Configurethe Instrument”section
with:

From the Functions palette select Application Control and drop a Property
Node on the Block Diagram.

Connect the resource name and error information from Configure
Measurement VI to the Property Node.

Right-click on the Property Node and select Change All to Write.
Click on the Property field and select Trigger >> Trigger Delay.

B IVl Demo (IVI-C) wProperty.vi Block Diagram

File Edit View Project Operate Tools Window Help
c{)l@l 'Q@Ml'ﬁ’luﬁ | 13pt Application Font |+ ”;pv| .”n:vl |C§7v‘ ~ 2
~
Resolution
Measurement Function
Read
Timeout -
m [>11.23°
[, GPIB0::23: INSTR [» -_‘ — =
IdQuery [@¥]- CLEEE Nﬂm- mw
(= -] 1 :
Reset B0 oo oo G0 |5 = hp344013 S| 54
> Trigger Delay
Range
TriggerDelay
v
< >
Using IVI-COM

Touse IVI-COM drivers in LabVIEW you will use the ActiveX functions and the

Class Browserthat are built-in to LabVIEW.

Create aVland Access the Driver
1 Launch LabVIEW

34

From the File menu, select New VI. The Front Panel and Block Diagram
appear.

Right-click in the Block Diagram. The Functions palette appears.

Select the Connectivity subpalette and then the ActiveX subpallete. From this
palette, you can access ActiveX and COM objects including all IVI-COM
drivers.

Select Automation Open from the palette and place it on the block diagram.

P 1I¥1 Demo (IV¥I-COM).vi Block Diagram
File Edit View Project Operate Tools Window Help

©[m] o[130t Applcation Font

~1[For][5e-] (5]

<X] Functions g Search! B
Programming »
» =n
=]
Structures Array
231" = ¢
> H
Numeric File 1jO
| I> |
B
Comparison

g9
il g
2

E

Dial

g

2
®
c
&
8
=
b
o
3
g
3

[0
=]

£

g

Synchronization Graphics & So...

Report Gener...

Measurement IfO »

Instrument IjO »

Vision and Motion >

Mathematics »

Signal Processing »

Data Communication »

Connectivity »

Control Design & Simulation] 4] Connectivity

SignalExpress X ActiveX

Express) m M ¥ 41 Activex

Addons) ! @I ﬁl Automation Open

Favorites) Libraries & Ex... Source Control Port IjO reD) #.‘

User Libraries) &

< | Select aVI... LQ Automation O... Close Refere... To Variant Variant To Data

- Multisim Tools

5 5 B

NET

Input Device ...

ActiveX

E5

Property Node

Static VI Refe...

B

Invoke Node

Reqgister Eve...

s

Unregister Fo...

6 Right-click on the Automation Refnum terminal, select Select ActiveX Class...
and then Browse...

35

7 From the Type Library drop-down, select the IVI Agilent 34401A (Agilent
Technologies) 1.2 Type Library Version 1.2, and then select the |1Agilent34401
object. Click OK.

Note: Ifthe IVI-COM driver you want to use is not listed, download and install the

driver and close and restart LabVIEW. The driver should now appear in the type
library browser.

. Select Object From Type Library

Type Library

IVI Agilent34401 1.2 Type Library Version 1.2, Browse

Objects

Show Creatable Objects Only
o Agilent34401 (Agilent34401.Agilent34401.1) A~

IAqilent34401AC

IAqilent34401ACCurrent
IAgilent34401ACYoltage
IAqilent34401Advanced
IAqilent34401Calibration

vu -l DR I L i T i .

v

[QK Cancel [Help

Initialize the Instrument
1 From the View menu, select Class Browser. The Class Browser allows you to
invoke methods and set or get properties of the ActiveX/COM object.
2 From the Object library drop-down, select ActiveX and then Select Type
Libraries.
3 Scrolldown and select the VI Agilent 34401A (Agilent Technologies) 1.2 Type
Library Version 1.2, Click OK.

36

File Edit Yiew Project Operate Tools Window Help

:; ’E] ‘E@Dﬂ | 13pt Application Font - ”;pv "ﬁvl

B! 1¥1Demo (IVI-COM).vi Block Diagram (](=1E3]
)

Back in the Class Browser, under Properties and Methods, scroll down and
select Initialize. Click Create and drag the Invoke Node to the Block Diagram.

Create constants and enter values for ResourceName, IDQuery, Reset, and
OptionString:

GPIB0::23::INSTR in the instrument ResourceName field

® Falseinthe IDQueryfield

* Trueinthe Resetfield

¢ Simulate=1inthe OptionStringfield

Connect the automation refnum and error terminals from Automation Open to
Initialize Invoke Node.

Note: Instead of using the Class Browser, you can select an Invoke Node from the
ActiveX subpalette and selectthe Initialize method. Toaccess driverproperties,
you can select a Property Node from the ActiveX subpalette and select the
appropriate property oryou canusethe Class Browserforboth IVI-Cand IVI-COM
drivers.

Agilent34401Lib.IAgilent34401

| 3 " IAgilent34401 §
Initialize

GPIB::23::INSTR |~ Resourcelame
b 1dQuery
OCHEEl Reset

b OptionString

Configure the Instrument

1

Go back to the Class Browser, and under Properties and Methods, double-click
the DC Voltage property and select the Configure method. Click Create and
drag the Invoke Node to the Block Diagram.

Create constants and enter values to set the Resolution to 1 millivolt and the
Range to 1.5 volts:

* 0.001inthe Resolution field
* 1.5inthe Range field

37

Take the Reading
1

Connect the automation refnum and error terminals from Initialize Invoke Node
to DCVoltage.Configure Invoke Node.

In the Class Browser, go back to the top-level object and double-click the
Trigger property and select the Delay property. Click Create Write and drag the
Property Node to the Block Diagram.

Create a constant and enter a value of 0.01 seconds for the Delay field.

Connect the automation refnum and error terminals from DCVoltage.Configure
Invoke Node to Trigger.Delay Property Node.

Return to the Class Browser, and under Properties and Methods, double-click
the Measurement property and select the Read method. Click Create and drag
the Invoke Node to the Block Diagram.

Set the value for Timeout to 1 second (1000 ms) by entering 1000 in the
MaxTimeMilliseconds field.

Connect the automation refnum and error terminals from Trigger.Delay
Property Node to Measurement.Read Invoke Node.

Display the Reading

Create anindicatorforMeasurement.Read from the Invoke Node terminal.

ClosetheDriverand Automation Sessions

1 Returnto the Class Browser, and under Properties and Methods, double-click
the Close method. Click Create and drag the Invoke Node to the Block
Diagram.

2 Closethe Class Browser. From the ActiveX subpalette, select Close Reference
and place on the Block Diagram.

3 Connect the automation refnum and error terminals from Measurement.Read
Invoke Node to Close Invoke Node and then to Close Reference function.

Add Error Checking

1 Return to the main functions palette. From the Dialog & User Interface
subpalette select Simple Error Handler VI and place it on the Block Diagram.

2 Connect the error information from Close Reference function to Simple Error

Handler V1.

38

Run the Application
Yourfinal VI Block Diagram should contain the elements shown below. Torun your
VI:

1 Switch to the VI's Front Panel and click on the Run arrow to run the application.
2 The Reading indicator should display a simulated reading from the instrument.

B! I¥1 Demo (I¥I-COM).vi Block Diagram

File Edit Yiew Project Operate Tools Window Help
O[] (@] [25] [walr@P] o [130t Applcation Fort |~ |35~ 5a~
-~
jlent34401Lib. IAgilent34401
S
= 5 *# Iagient34401 § 2% Iagient34401 G115 = Iagi 01 B[} "+ 1agi 01 Rl{% *+ IAgient34401 BL|
o Initialize: DCvoltage.Configure | — Trioger Delay | Measurement.Read o | Close |
GPIB::23::INSTR [~ Resourcellame EF» Rang "MaxTimeMiliseconds Read]
L2 @} 1dQuery » Resolution
=] Reset ﬁ ;m pli2s.
Simulate=1 [OptionString m m
v
< 2

Further Information
Learn more about using an Minstrument driver in LabVIEW in this tutorial:
http://www.ni.com/tutorial/4556/en/.

39

Using IVI with LabWindows™/CVI™

The Environment

National Instruments LabWindows/CVI is an ANSI-C integrated development
environmentthatprovides a comprehensive setof programming tools for creating
testand controlapplications. LabWindows/CVIcombinesthelongevity and
reusability of ANSI-C with engineering-specificfunctionality designedfor
instrumentcontrol, dataacquisition, analysis, and userinterface development.

Example Requirements
* LabWindows/CVI18.1orlater

* [VI-C:Keysight34401AIVI-C driver, Version 4.5, January 2015 (from
National Instruments)

Note: IVI-C driver requires the NI IVI Compliance Package to be installed.
Check National Instruments Web site for details.

Download andInstallthe Driver

If you have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it. You can also refer to Chapter 1, Download
and Install IVI Drivers, for instructions.

This example uses an IVI-C driver. IVI-C is the preferred driver for
LabWindows/CVI.

Create aNew Projectand Add InstrumentDriver Files
1 Launch LabWindows/CVI.

2 Select File, select New, and click Project.
3 Tocreate a new C source file, select New and click Source (*.c). Save the file.
4

Select Edit and click on Add Files to Project to add the C source file to your
project.

5 Select Edit and click on Add Files To Project to add one of the following
instrument driver files to your project: hp34401a.fp, hp34401a.c, or
hp34401a.lib.

40

ol

File | Edit | Yiew Buld Run Instrument Library Tools Window

c:MVI Demo}MVI Demo.cws

Options Help

\Workspace...
Project...
Add Files to Project...
Include File in Build Ct

Enable 'O" Option

Source (*.c)...
Include (*.h)...

Object {*.abj)...
Library (*.lib)...

User Interface (*.uir)...
Instrument {*.Fp)...

all Files (*.*)..,

Replace File in Project...

Remove File Del

Find... Shift+F3 i

[+

=

3 Libraries
£ Instruments
+ ¥ [HP 344014 Dig

Note: Any of the three files listed above will work. Adding one of the HP 34401A
instrument driver files loads that instrument driver. View the available functions
in the library tree in the workspace window.

Add the following line to your program to include the instrument driver header
file:

#include “hp3440la.h”

Initialize the Instrument

1
2

From the Edit menu, select Insert Construct, and click Main.

Find the hp34401a instrument driver in the instrument driver tree. Select
Initialize with Options from the library tree. The Initialize with Options function
panel opens.

Enter values for Resource Name, ID Query, Reset Device, and Option String:
* GPIB0::23::INSTRinthe Resource Namefield

* No for ID Query control

* YesforResetDevice control

¢ Simulate=1inthe Optionsfield

Note: The RangeCheck, QuerylinstrStatus, and Cache options appear
automatically. The options are enabled by default.

41

&1 c:\IVI Demo\IVI Demo.cws - [HP 34401A Digital Multimeter - Initialize With Options] EI@”X]

Bl E0t Vmw Code Buld Run [rstrument Lbeary Took Window OQptions Help =8 x|
a8 Bmiiab & GNlleas &8 |
- 4
=D Source Fies Coppeght 1338 Nationsl Irstauments Conpoeation. Al Rights Reserved.
fcl ™M Democ
= 'Dﬂm::; Resousce Name 1D Query Reset Devica
_r" [*GPIBO::23. INSTR® r o Yes
| < . L B No
S 00 Lbanes |
=12 Instruments Opbice Sting
SR DI | Tater, RangeCheck+1, GueryInstrStatuse1, Cache=1"
BR (IndwiriOptons]

+ @ Corhgueaion

+ @ Meassutement

. Uty

cloge
e Stahus
Irgtnument Handie| r
§ I
{ |
[hp34401a_InitVithOptions ("GPIBO. :23::INSTR®. VI_FALSE, VI_TRUE. j

<

Sinulaterl, RangeCheckrl, QuerylnstrStatus~i,
):

i ;l_ll“ J .r-‘

4 Select the Instrument Handle parameter. From the Code Menu, click Declare
Variable to set the Instrument Handle parameter.

5 Enter session in the Variable Name field.

6 Check the boxes titled Execute declaration in Interactive Window and Add
declaration to top of target file “*.c”. Click OK.

Note: Totest the function with the specified parameter values, select Code and
click Run Function Panel or click the run button in the toolbar to operate the
function panel interactively.

7 From the Code Menu, click Insert Function Call to insert the function and
values into your program. Close the function panel. The
hp34401a_InitWithOptions function appears in your program.

42

& ¢:\IVI Demo\IVI Demo.cws - [1V] Demo.c *]
Bl ER Yeow M Run Instrument LUUV Tods ﬂm mions Wb

HasH o H 453 [& 5 p

(9]L=1[3]
ETE

Configure the Instrument

= [#] VI Demo A Tsinclude <ansic. hy
= 2 Soucs Files »‘: nclude hpB(GDl; h*
WV Democ™ u ccvirte h>
i? j@i"_?gﬂ:‘iw 'tauc ViReal$d reading;
- r:w""hr; static ViSession ssssion!
[=4
2 J_] int msin (int arge, char wargv(])
3 Liraries " | if {InitCVIRTE (0, argv, 0) == 0)
* l—;l ""e‘ return =1: ‘e out aof mencry
= 2 Instrumeets
= @/ HP 344014 Digtal b hp34401a_InitVithOptions {“GPIBO: 23 IHSTR VI_FALSE,
Led
Py e Suulete-l RangeCheck=1, Quaryl
.%@IM CeRenion)s
* (""m’]
+ @ Moasuemant
+ Uty
choss return 0.

}

1 From the library tree, select Configuration and click ConfigureMeasurement.
The ConfigureMeasurement function panel opens.

2 Set the function to DC Voltage, range to 1.5 volts, resolution to 1 millivolt, and
instrument handle to session. Select and enter:

¢ DC Volts from the drop-down list in the Measurement Function field,

* 1.5inthe Rangefield,
® 0.001inthe Resolution field, and

* sessioninthe InstrumentHandle field.

43

£0 c:\IVI Demo\IVI Demo.cws - [HP 34401A Digital Multimeter - Configure Measurement]
Fle Et VYew Code fud Bun jnstrument (Brary Tooks Window OQptiors Help
@ miEaGgsNilkasS «&8 0
- (3] V1 Demo
= (22 Source Fies
i M Democ™
= [Instumect Files

re30lalfp

5

+) Livanes
= £ Inatruments S—
=/ HP 344014 Digtal Multerate 0.001
5
2N Inf\WithDptons
- 9 Corfgueston
[CorbpaeNosnienss
+ @ Spechic Mesnsemen
< @ Tegger
+ & MaPont
+ @ Tempershae
+ @ Measweomert Oporats
+ @ Corbgursbon Informat A
+ @ Set/Get/Theck Attt 3033100
e

|

Messsemant Furchon Ronge!

J_] S DCVoRs 1.5
|

Retoktion [absokie)

Iratnament Handle

.
e Mo,

3 Select the Code menu and click Insert Function Call to insert the function and

values into your program. Close the function panel. The
hp34401a_ConfigureMeasurement function appears in your program.

From the library tree, select Configuration, select Trigger, and click
ConfigureTrigger. The Configure Trigger function panel opens.

Set the trigger source to immediate, the trigger delay to 0.01 seconds, and the
instrument handle to session. Select and enter:

* Immediate from the drop-down listin the Trigger Source field

® 0.01inthe Trigger Delay field

* sessioninthe InstrumentHandle field

Select Code and click Insert Function Call to insert the function and values into
your program. Close the function panel. The hp34401a_ConfigureTrigger
function appears in your program.

Setthe Reading Timeout

1

From the library tree, select Measurement and click Read. The Read dialog
opens.

Set the value for Timeout to 1 second (1000 ms), and instrument handle to
session. Enter:

* 1000 in the Read field
* sessioninthe InstrumentHandle field

44

Display the Reading

1

2
3
4

Select the Reading parameter.
Select Code and click Declare Variable. The Declare Variable dialog appears.
Enter reading in the Variable Name field.

Check the boxes titled Execute declaration in Interactive Window and Add
declaration to top of target file “*.c”. Click OK.

Select Code and click Insert Function Call to insert the function and values into
your program. Close the function panel. The hp34401a_Read function appears
in your program.

Close the Session

1
2
3

From the library tree, select Close. The Close function panel opens.
Enter session in the Instrument Handle field.
Select Code and click Insert Function Call to insert the function and values into

your program. Close the function panel. The hp34401a_Close function
appears in your program. Your final program should contain the code below:

#include <ansi_c.h>
#include "hp3440la.h"
#include <cvirte.h>
static ViReal64 reading;
static ViSession session;

int main (int argc, char *argv[])

{
if (InitCVIRTE (0, argv, 0) == 0)
return -1; /* out of memory */
hp3440la_InitWithOptions (
"GPIB0::23::INSTR", VI_FALSE,
VI_TRUE, "Simulate=1", &session);
hp3440la_ConfigureMeasurement (session,
HP34401A VAL DC_VOLTS, 1.5, 0.001);
hp3440la_ConfigureTrigger (session,
HP34401A VAL IMMEDIATE, 0.01);
hp3440la_Read (session, 1000, &reading);
printf ("%$f", reading);
hp3440la_close (session);
return 0;
}

45

Note: Todisplaythe reading, add a printffunction. Before the Close function, type:
printf (“%£”, reading);

Note: Including error checking in your programs is good practice. Use the
CheckErr macro provided in the ivi.h file to handle errors. See the example

included with the hp34401 downloaded driverforerrorhandling demonstration
code.

Further Information
Learn more about LabWindows/CVI at http://www.ni.com/lwcvi/.

The mark LabWindows is used under a license from Microsoft Corporation.

46

Using IVI with MATLAB®

The Development Environment
MATLAB from MathWorks is an interactive software environmentfordata
acquisition and analysis, waveform generation, algorithm creation, and test system
development. MATLAB also provides a technical computing language thatis

designed to help you solve technical challenges faster than with traditional
software environments.

MATLAB supports IVI-C and IVI-COM instrumentdrivers using the Instrument
Control Toolbox. The toolbox provides additional MATLAB functionality.

Requirements for this Example
* MATLAB R2014a or higher
®* MATLAB and Instrument Control Toolbox
* Agilent 34401A1VIdriver (from Keysight Technologies)
® KeysightlO Libraries Suite 17 or higher

Download andInstallthe Driver

Ifyou have notalready installed the driver, go to the vendor Web site and follow the
instructions todownload and install it.

ConfigurethelVIDriver

ThelnstrumentControl Toolboxprovidesagraphical Test&MeasurementToolthat
enables you tointeract with instrument drivers and instruments without writing
MATLAB code. The Test & Measurement Tool lets you configure VI driver
properties in MATLAB and store them in the IVI configuration store.

1 Atthe MATLAB command line, type tmtool to launch the Test & Measurement
Tool GUI. Or from the MATLAB Main Menu, select Toolboxes, then Instrument
Control Toolbox and click Test & Measurement Tool. The Test & Measurement
Tool GUI opens.

2 Inthe tree at left, click the /VI node under the Instrument Drivers node.

3 Selectthe Hardware Assets tab. In the Hardware Assets dialog, select Add and
enter the following:

* myDMM inthe Name field

47

* Thisis my Agilent 34401 Digital Multimeter in the Description field (optional)
® GPIB0::23 inthe IO Resource namefield

f| Test & Measurement Too
File View Tools Desktop Window Help
@ | 2
| Test & Measurement
& ‘\ Instrument Contrel Toclbox
@-Hardware
(%P Instrument Objects

&-[4] Tnstrument Drivers Iggical Nomes | Driver Sessions | Software Modules| Hardware Assml
@-[#) MATLAB Instrument Drivers =

2 Vaplogupley Oivers Name
87 1] myOMM
Description:

This is my Agilent 34401 Digital
Multimeter

Configuration store
C:\ProgramData\IVI Foundaticn\IVI\lviCenfigurationStorexml

IO resource name:
GPIBDz:23

,_-«-““-“"ﬂ-«. / ‘-\-u.._w.._“_

....

4 Select the Software Modules tab. The installed VI drivers appear.

Note: If you have not installed the VI driver, it will not appear in this list. You must
close MATLAB, installthe driver, and restart MATLAB for the driverto appear.

5 SelectAgilent34401 from the drop-down list. The Software Modules dialog lists
the module name, supported instrument models, and description.

48

(=]

© 0 ~N

Configuration store
C:\ProgramData\IVI Foundation\IVI\lviConfigurationStore.xml

| Logical Names | Driver Sessions| Software Modules | Hardware Assets

e
AglnfiniiVision Supported instrument models:
34401A

Description:

IVI driver for Agilent Technologies
34401A Digital Multi Meter

Physical names:

—

Next, you must define your Driver Session to link the Software Module with the
Hardware Asset and indicate whether you want to use Simulation Mode or other
optional parameters when connecting.

Select the Driver Sessions tab. In the Driver Sessions dialog, select Add and
enter the following:

* DMMin the Name field

* Thissessionmatchesthe Agilent34401 driver withthe hardware asset of
GPIBO0::23, and turns on Simulation mode of the driver in the Description
field (optional)

Select Agilent34401 in the Software module drop-down list.
Select myDMM in the Hardware asset drop-down list.
Check Simulate in the options.

49

Configuration store

DMM

C:\ProgramData\IVl Feundation\IVI\lviConfigurationStore.xml

Driver Sessions | Software Modules | Hardware Assets

Name:
\DMM

Description:

This session matches the Agilent 34401 driver with the hardware asset of
GPIB0::23, and turns on Simulation mode of the driver in the Description field

Driver setup: .
| |
Software module: ~ Hardware asset:

[agation <[mybham

Physical Name ~ Virtual Name 2

Cache [] Interchange check
Query instrument status Range check

Record coercions Simulaté

|

10 Select the Logical Names tab. In the Logical Names dialog, select Add and
enter the following:

* dmminthe Name field

* Thislogicalnameenablesyourprogramtoaccessany DMMindependent
of manufacturer or hardware assetin the Description field (optional)

* DMMin the Driver session field

50

Het
Configuration store

C:\ProgramData\IVI Foundation\IVI\IviConfigurationStore.xml

Logical Names | Driver Sessionsl Software Modules | Hardware Assets

P -

dmm

Description: 2.

This logical name enables your program te access any
DMM independent of manufacturer or hardware asset

Driver session:
_§DMM

11 Select File and Save IVI Configuration Store. Saving to the store
may take several moments.

12 Close the Test & Measurement Tool.

Configure and Control the Instrument
This next section consists of 2 parts. The first illustrates how to
communicate with the DMM using an IVI-C driver and the second
illustrates how to communicate with the DMM using an IVI-COM driver.
IVI-COM drivers are only supported on 32-bit MATLAB. IVI-C drivers
are the recommended way to communicate with instruments when
using IVI drivers as they are supported in both 32-bit and 64-bit
versions of MATLAB.

nnecting with an IVI-C driver:

Additional Software Required

To use IVI-C drivers, first install National Instruments IVI Compliance Package
version 4.0 or later

Create an Instance of the Instrument using the IVI-C Class-

50

Compliant Interface

DMM IVI drivers provide a standard interface, called the class-compliant
interface, to access functionality that is consistent across all instruments of a
particular type. We'll access the Agilent 34401 using the standard DMM
interface. MATLAB also supports access to the device-specific interface
representing unique capabilities of the instrument.

To create an instance of the instrument and assign to a variable in the
MATLAB environment, type

myDmm = instrument.ivic.lviDmm();

Connect to the Instrument

The Initialize command connects to the instrument. The instrument will be
initialized with the properties you specified using the Test & Measurement
Tool. Type

myDmm.init('"dmm’,false,false)

Configure the Instrument
To set a range of 1.5 volts and resolution of 0.001 volts, type

myDmm.BasicOperation.Range = 1.5;
myDmm.BasicOperation.Resolution = 0.001;

Set the Trigger Delay
To set the trigger delay to 0.01 seconds, type

myDmm.Trigger.Trigger_Delay = 0.01;

50

Display Reading
To display the reading, type

data= myDmm.Measurement.Read(1000)
Note: data=0 if using Agilent driver in simulation mode

Close the Connection to the Instrument
To disconnect, type

myDmm.Close()
Your final application should contain the code below:

>> myDmm = instrument.ivic.lviDmm();
>>myDmm.init ('dmm’,false,false)
>>myDmm.BasicOperation.Range = 1.5;
>>myDmm.BasicOperation.Resolution = 0.001;
>>myDmm.Trigger.Trigger_Delay = 0.01;

>> data = myDmm.Measurement.Read(1000)
data =

0

>>myDmm.Close();

nnecting with an IVI-COM driver:

NOTE: |VI-COM drivers can only be used with 32-bit version of MATLAB. IVI-C
drivers are the recommended way to connect to instruments from MATLAB.

Create an Instance ofthe Instrumentusing the IVI-COM Class-

Compliant Interface

DMM 1VI drivers provide a standard interface, called the class-compliant
interface, to access functionality that is consistent across all instruments of a
particular type. We'll access the Agilent 34401 using the standard DMM
interface. MATLAB also supports access to the device-specific interface
representing unique capabilities of the instrument.

Tocreate an instance of the instrument and assign to a variable in the MATLAB
environment, type

50

myDmm = instrument.ivicom.lviDmm(‘'dmm");

Connect to the Instrument

The Initialize command connects to the instrument. The instrument will be
initialized with the properties you specified using the Test & Measurement Tool.
Type

myDmm.Initialize('dmm’,false,false,")

Configure the Instrument
Toset a range of 1.5 volts and resolution of 0.001 volts, type

myDmm.Range = 1.5;
myDmm.Resolution = 0.001;

Setthe TriggerDelay

Toset the trigger delay to 0.01 seconds, type
myDmm.Trigger.Delay = 0.01;
Display Reading

Todisplay the reading, type

data= myDmm.Measurement.Read(1000)

Note: data=0 if using Agilent driver in simulation mode.

Closethe ConnectiontotheInstrument
Todisconnect, type

myDmm.Close()

Yourfinal application should contain the code below:

>> myDmm = instrument.ivicom.lviDmm(‘dmm’);
>>myDmm.Initialize('dmm’,false,false,")
>>myDmm.Range = 1.5;

>>myDmm.Resolution = 0.001;
>>myDmm.Trigger.Delay = 0.01;

>> data = myDmm.Measurement.Read(1000)

data=0

50

>>myDmm.Close();

Further Information
Tolearn more about using MATLAB with IVl instrument drivers over both class-
compliant and device-specific interfaces, visit: http://www.mathworks.com/ivi

MATLAB:s a registered trademark of MathWorks, Inc.

55

Using IVIwith Visual Basic 6.0

The Environment
Visual Basic 6.0 is a programming environment derived from Basic and
developed by Microsoft for the Windows operating system. Software vendors
and developers use VB to create applications quickly by writing code to
accompany on-screen objects such as buttons, windows, and dialog boxes.

This chapter focuses on VB 6.0, which is not the most current version. If you
are new to VB, we recommend another guide in this series, Getting Started
with IVI Drivers: Your Guide to Using IVI with C# and Visual Basic .NET.

Example Requirements
* VisualBasic6.0
* MicrosoftVisual Studio2010

* [VI-COM: Agilent 34401A IVI-COM, Version 1.2.2.0, October 2008 (from
Keysight Technologies); or

* [VI-C: Keysight 34401A IVI-C driver, Version4.5,January2015
(from National Instruments).

® Agilent 10 Libraries Suite 16.1 or later
® National Instruments IVI Compliance Package version 4.0 or later

Download andInstallthe Driver
Ifyou have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it. You can also refer to Chapter 1, Download
and Install IVI Drivers, for instructions.

This example uses an IVI-COM driver. IVI-COM is the preferred driver for Visual
Basic 6.0, butIVI-C is also supported via the inclusion of .bas files.

Create aNew Projectand Reference the Driver

Touse an VI Driverin a Visual Basic program, you must first create a project and
add a reference to the driver.

1 Launch Visual Basic and create a new project using Standard EXE project.
Note: This creates a Windows Application program.

2 From the Start Menu, select Project, and click References. The References
dialog appears.

56

3 Select the IVI Agilent34401 1.1 Type Library from the drop-down list. Place a
check in the box next to this driver.

Note: If you have not installed the IVI driver, it will not appear in this list. You must
close the References dialog, install the driver, and select References again for the
driverto appear.

4 Click OK. The References dialog closes.

@

References - Project1

Available References: OK

__liPassSQMRecorder 1.0 Type Library Cancel

__|IPassSQMUploader 1.0 Type Library

__liPCAgent 1.0 Type Library

|| ISAFrdm 1.0 Type Library Browse...

__|15ScriptHandler 1.0 Type Library _‘ -
4

;IVIA|Ient33220 Agilent Technologies) 1.1 Type Libr —

|

"] IVI Agilent34410 1.0 Type Library Priority

: VI AgllentRFPowerMeter 3.0 Type lerary Help

Note: You mustclick OK for Visual Basic to accept the References; however, the
software provides no confirmation. You can verify the driveris available for use by
opening the Add References dialog and viewing the checked references. All
checked references appear nearthe top ofthe list.

AddaButton
1 Click the Command Button in the Toolbox to create a button.

2 Drag the button to the form and drop it.

3 Change the (Name) property to btnTest and the Caption property on the
Command1 button to Test in the Properties list at right.

60

(==

C] E} Project1 (Project1)
= 3 Forms

B Form1 (Form1)

= Project1 - Form1 (Form)

Properties - btnTest

|btnTest CommandButton -l
Alphabetic | categorized |

(Name) btnTest -~
Appearance 1-3D E
[&+aooooooF
False
Test

Create an Instance of the Driver
1 Double-click Test. The Project1 — Form1(Code) screen appears. Note that
some code has already been added, including Private Sub
btnTest Click() and End Sub.

2 Toenable strong type checking, at the top of the screen before the Private
Sub linetype
Option Explicit

3 Create a variable for the driver and initialize it with the New statement. On the
next line type
Dim dmm As New Agilent33401

Initialize the Instrument
Now you will enter the code that will execute when you click Test.

OnthelineafterPrivate Sub btnTest Click(),typedmm. Thentype
dmm.Initialize "GPIB::23", False, True, "Simulate=True"

Note: As soon as you type the period, Intellisense displays the possible methods
and properties and helps ensure you use correct syntax and values.

Note: From the Start Menu, select View, and click Object Browser to view the
functions and parameters available in the instrument driver. Limitthe Object
Browser to a specific library by selecting it in the top left list box.

61

w’ Object Browser Q@EJ

[<All Libraries> ~] <] Ba|=| ¢
| ~| #Alv]
Classes Members of ‘Agilent34401*
@ <globals> ~||e& AC A
&) Agilent34401 i |e&' ACCurrent
=7 Agilent34401Apertur [e§' ACVoltage
=7 Agilent34401AutoZe — [e§' Advanced
=F Agilent34401dBmRe |g&' Calibration
=P Agilent34401EmorCc |=® Close
=P Agilent34401Functio [#&' DCCurrent
=P Agilent34401InputTe &' DCVoltage
=7 Agilent34401MathFu |g&' DCVoltageRatio
=P Agilent34401MeasC |[e&' Display
=P Agilent34401Resolu &' DriverOperation
= Agilent34401Sample |[§' Frequency
=P Agilent34401Statusf [e&' Function
=7 Agilent34401Statuse S |dentity
=P Agilent34401Trigger = |nitialize
=P Agilent34401Trigger [e&' Initialized
=® AlignConstants & viDmm
= AlignmentConstants [e&' Math
& AmbientProperties &' Measurement
& App & Resistance —
= ApplicationStartCons [e§' Status
&) AsyncProperty o |8 System F
Sub Initialize(ResourceName As String, IdQuery As Boolean, Reset As Boolean, ~
[OptionString As String))
Member of Agilent34401Lib Agilent34401
Opens the /O session to the instrument. Driver methods and properties that access the
instrument are only accessible after Inttialize is called. Initialize optionally performs a Reset
and queries the instrument to validate the instrument model. :

Configure the Instrument
Set the function to DC Voltage, range to 1.5 volts, and resolution to 1 millivolt.

1 Typedmm.Function = Agilent34401FunctionDCVolts
2 Type dmm.DCVoltage.Configure 1.5, 0.001
3 Select Configure from the drop-down list and press the space bar.

Note: The Object Browser shows the parameters and syntax for Configure in the
box at bottom, along with a short description.

4 Typel.5, 0.001

62

Setthe TriggerDelay
Setthe trigger delay to 0.01 seconds.

Type: dmm.Trigger.Delay=0.01

Display the Reading
Setthe reading timeoutto 1 second and display the reading.

1 Return to the form view and click the Label Button in the Toolbox to create a
label.

Drag it to the form and drop it.
Change the Name to IbIResult in the Properties list at right.
Remove the text under Caption.

a b~ ODN

In the code after the trigger delay command, type
1blResult.Caption = dmm.Measurement.Read (1000)

Close the Session
Type dmm.Close

Yourfinal program should contain the code below.

Option Explicit

Dim dmm As New Agilent34401

Private Sub btnTest Click()

dmm.Initialize “GPIB::23”, False, True, “Simulate=True”
dmm.Function = Agilent34401FunctionDCVolts
dmm.DCVoltage.Configure 1.5, 0.001

dmm.Trigger.Delay = 0.01

1blResult.Caption = dmm.Measurement.Read (1000)

dmm.Close

End Sub

63

Tips

oE e

N = 1 Project1 (Project1)
=13 Forms
B Formi1 (Form1)

Properties - Form1

IForml Form
Option Explicit

Dim dren As New Agilent34401

Private Sub btnTest_Click()

dran. Initialize "GPIB::23", False, True, "Simulate=True"
dran. Function = Agilent34401FunctionDCVolts
dram.DCVoltage.Configure 1.5, 0.001

drw. Trigger.Delay = 0.01

lblResult.Caption = cdmm.Measurement.Read(1000)

Form1 ~
Appearance 1-3D a
AutoRedraw False
BackColor [a+s000000F
BorderStyle 2 - Sizable
Caption Form1
ClipControls True

1153

da. Close

End Sub '(Name)
Returns the name used in code to
identify an object.

The Agilent 34401 driver conforms to the IviDmm class, so you can easily write
your program to use the class-compliantinterfaces instead of the instrument-
specific interfaces. You will need to add a Reference to the lviDmm Class Type
library for your project to compile. Here is the code:

Option Explicit

Dim dmm As New Agilent33401
Dim ividmm As IIviDmm

Private Sub btnTest Click()

Set ividmm = dmm

ividmm.Initialize "GPIB::23", False, True, "Simu-

late=True"

ividmm.Configure IviDmmFunctionDCVolts, 1.5, 0.001
ividmm.Trigger.Delay = 0.01

1blResult.Caption = ividmm.Measurement.Read (1000)

ividmm.Close

End Sub

64

Further Information
Learn more about Visual Basic at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnanchor/html/vb6anchor.asp.

Microsoft® and Visual Studio® are registered trademarks of Microsoft Corporation
in the United States and/or other countries.

65

Using IVIwith Keysight VEE Pro

The Development Environment
KeysightVisual Engineering Environment Prois a graphical programming
environment designed to help you quickly create and automate measurements and
tests. VEE Pro lets you program by creating an intuitive block diagram. You select
and edit objects from pull-down menus and connect them to specify the program
flow. VEE Pro alsoincludes Instrument Manager, which facilitates control and
management of your devices. Let's see how VEE Pro works with IVI.

Example Requirements
* Keysight VEE Pro9.2

* Agilent34401AIVI-COM/IVI-C, Version 1.2.2.0, October 2008 (from
Keysight Technologies)

* KeysightlO Libraries Suite 16.0 or greater

DownloadandInstallthe Driver
If you have not already installed the driver, go to the vendor Web site and follow the
instructions to download and install it. You can also refer to Chapter 1, Download
and Install VI Drivers, for instructions.

This example uses the IVI-COM driver. VEE Pro does not supportthe use of IVI-C
driversthroughthe InstrumentManager.

LaunchthelnstrumentManagerand Selectthe Driver
If you have correctly installed the VI driver, VEE Pro’s Instrument Manager will
automatically find it for you.

1 Launch VEE Pro.
2 From the Main Menu, select I/O, and click Instrument Manager.

Note: If you were connected to a live instrument, you would click the Find
Instruments button at the right in this screen and then skip to the next section.

3 Click Add underinstrumentin the list at the right to add a simulated instrument.
The Instrument Properties dialog box appears.
4 In the Instrument Properties dialog box, enter or select the following:

* myDMM inthe Name field
* GPIB inthe Interface field
* 0inthe Board Number field

66

* GPIB0::23::INSTRinthe VISA Addressfield

Instrument Manager
%,af'mu‘ say Smpl i—'l]

vl BHE HID

nstrument Properties

Name: I myD MM
Interface: I GPIB _'__l
|
Board Number: l 1] =1 ‘
VISA Alias: |
VISA Address: |GPIBO:23:INSTR
£.9. GPIBO0:12:INSTR

Advanced... I
Cancel I Help I

5 Click Advanced. The Advanced Instrument Properties dialog box appears.
6 Click the IVI-COM Driver tab. Select Agilent 34401 from the drop-down list.

Note: The VISA address that you entered earlier appears automaticaly in the
Address field.

Advanced Instrument Properties

IVI-COM DriverfSession Name:

Agilent33220

- Parameters ta init() call
Address (e.g., GPIBD:12:INSTR)

vV Perform Identification Query

Agilent34410
AgilentRFPowerhMeter
Dhind - Session Name
Unknown

Jpaestarchangeability (Extra Features) —
ant Interface T

[V Perform Reset

67

7

Click the IVI-COM Driver tab. Select Agilent 34401 from the drop-down list.

Note: The VISA address that you entered earlier appears automatically in the
Address field.

8 Click OK. The dialog closes and returns to the Instrument Properties dialog.
9 Click OK. The dialog closes and returns to the Instrument Manager.
Congratulations! You can now access the VI Driver in the Instrument Manager.
Note: Ifthe driver is correctly installed, the text darkens on the IVI-COM Driver
button under Create I/O Object in the list at the right.
Instrument Manager 2] x|
Instrument List Auto Discovery
&) My Configuration (C:\Documents and SettingsinbergquilLocal Setting ' |
--¥8 GPIBO

myDmm({@GPIB0::23:INSTR)

d — Properties... J_

Configure Drivers I

Settings... |

Instrument

Create an Instance of the Driver

1

2
3

Click IVI-COM Driver under Create I/O Object at the right. An outline of the
object appears.

Move the object onto your workspace.

Double-click <Double-Click to Add Operation> in the To/From myDMM object.
The Select an Operation dialog box appears.

Select Createlnstance to create an instance of the Agilent 34401 driver.

Note: Atthe bottom ofthe dialog box, the code forthe operation appears along with
an explanation ofits function.

68

Select an Operation from "Agilent34401Class"

--@ Createlnstance
=@ Initialize
=@ Close
+ B8 AC
+ E&' ACCurrent
+ & ACVoltage
+ &' Advanced
+ B&' Calibration
+ B DCCurrent
+ B8 DCVoltage
+ &' DCVoltageRatio —
+ &' Display
+ E&' DriverOperation
+ &' Frequency
+ & Function
+ B8 Identity
&' Initialized

(>

(<€

Createlnstance("Agilent. Agilent34401 . Interop",
"Agilent. Agilent34401.Interop.Agilent34401Class")

Create the IVI-COM driver.

| 0K I Set Cancel Help Member Help

Click OK. The Edit Createlnstance dialog box appears.
Click OK.

Initialize the Instrument

1

2

Double-click to add another operation. The Select an Operation dialog box
appears.

Select Initialize to initialize the simulated Agilent 34401. Click OK. The Edit
Initialize dialog box appears.

In the Edit Initialize dialog box, GPIB0::23::INSTR has already been entered
in the ResourceName field. Enter or select the following:

® FalseintheldQueryfield

® Trueinthe Resetfield

¢ simulate=trueinthe OptionStringfield

69

4

Click OK.

Configure the Instrument

1

4

Setthe TriggerDe
1

3
4

Double-click to add another operation. The Select an Operation dialog box
appears.

Expand the treenode DCVoltage and select Configure. Click OK. The Edit
Configure dialog box appears.

Toset a range of 1.5 volts and resolution of 1 millivolt, enter the following in the
Edit Configure dialog box:

* 1.5inthe Range field

® 0.001 inthe Resolution field

Click OK.

lay
Double-click to add another operation. The Select an Operation dialog box

appears.

Expand the treenode Trigger and select Delay. Click Set. The Edit Delay dialog
box appears.

To set a trigger delay of 0.01 seconds, enter 0.01 in the delay field.
Click OK.

SettheReading Timeout

1

Double-click to add another operation. The Select an Operation dialog box
appears.

Expand the treenode Measurement and select Read. Click OK. The Edit Read
dialog box appears.

To take a reading with a timeout of 1 second, enter 1000 in the
MaxTimeMilliseconds field.

Click OK. The To/From myDMM object includes an additional output node
labeled return. This will hold the value returned from the Read Measurement
operation.

Close the Session

1

Now that you have completed all of the driver operations, you should close the
driver sessiontofreeresources.

Double-click to add another operation. The Select an Operation dialog box
appears.

70

2 Select Close to release all resources associated with the simulated Agilent

34401. Click OK.

o 5 8]
—| To/From myDmm =

agilent34401Class = Createlnstance("Agilent Agilent34401 Interop”, "Agilent Agilent344
agilent34401Class.Initialize("GPIB0::23:INSTR", False, True, "simulate=true") agilent34401Class
agilent34401Class.DCVoltage.Configure{1.5, 0.001)]
agilent34401Class. Trigger.Delay = 0.01
return = agilent34401 Class.Measurement.Read(1000)
agilent34401Class.Close()
< Double-Click to Add Operation > return
< >

O

Display the Reading
1

To display the measurement, from the Main Menu select Display, and click
AlphaNumeric. Place the AlphaNumeric object on your workspace.

2 Connecta wire from the return output terminal on To/From myDmm to the input

terminal of the AlphaNumeric object.

3 Click F5 or the Right Arrow button on the toolbar to run the program. The

Display returns a simulated result.

Tips
AnotherMethodtoDisplay the Reading

You can display the measurementin another way as well. From the Main Menu,
selectselect Data, Variable, and click Declare Variable. Declare aglobal variable
named agilent34401Class with a Type Object and Sub Type .NET. Select Edit
and in the Specify Object Type dialog, select the following:

* Agilent.Agilent34401.Interop in the Assembly field
* Agilent.Agilent34401.Interop in the Namespace field
* Agilent34401Classinthe Typefield

Then delete the agilent34401Class output terminal. You can now share this IVI-
COM object with other To/From objects or formula objects in VEE. This will let you
use multiple objects for the same driverinstance without creating all of your driver
commandsinone object.

Further Information

Learnmore aboutVEE Pro at www.keysight.com/find/vee.

71

IVI Architecture

Advanced Topics

Now that you’ve seen how to create a short program to perform a measurementin
popular programming environments, we want tointroduce afew advanced VI
topics: architecture, requirements for interchangeability, Configuration Store, and
future developments. These should broaden your view of the capabilities of VI
drivers.

Up to this point, we've focused on using either an IVI-COM or IVI-C driver from a
specificADE. The schematicbelowillustrates the use modelforVIdriversthatwas
deployedinthe previous chapters. This use modelis the simplestmethod of using
an IVl driver but does not enable interchangeability. This section explains the
architecture, including the capabilities of the various driver types and their
contribution to interchangeability.

Driver API

Tosupportpopularprogramminglanguages anddevelopmentenvironments, VI
drivers provide eitheran IVI-COM oran IVI-C API. Driver developers may provide
bothinterfaces, as well as wrapper interfaces thatimprove usability in specific
development environments.

The IVI-COM driver uses a standard Component Object Model (COM) interface
that provides access to the functions defined in the class through a hierarchy of
methods and properties.

The IVI-C driver appears as a dynamic link library (DLL), such as Windows DLL,
composed of standard C functions. The C specifications also define components
suchaserrorhandlinganddriversession creationand management, whichensure
robustness and interoperability.

The easiestinterface to use in a given Application Development Environmentis
one thatis native to the environment. So a C interface works bestin C and a COM
interface in Visual Basic. Some ADEs supportonly one type ofinterface, however,
which makes the choice simple.

Driverdevelopers also provide wrapperinterfaces optimized for specific
development environments. The wrapper functions as an adapter between an ADE
and adriver notdesigned forthat ADE. Itenables the ADE to use technologies for
which no native implementation exists. In Chapter 6, IVIwith MATLAB, for
example, generating an instrument wrapper is a key step in creating the program.

72

Driver Types

The schematic on the next page shows the three basic types of drivers: Both IVI-
COM and IVI-C use Custom and Class Compliant Drivers, but Class Drivers are
unique to IVI-C. Usually, you only need to be concerned about the type of driver if
youwanttoenableinterchangeability. Tounderstandthe differencesamongthem,
you first need to understand the various capabilities these drivers support:

Inherent capabilities: capabilities required by the IVI Foundation, such as
instrument simulation, state-caching, interchangeability checking, and range
checking, as wellas commands, such as Initialize, Reset, and Close. Some
capabilities are required for all drivers, but others are optional.

Base class capabilities: capabilities identified by an IVl Foundation working group
as common among the majority ofinstruments in a class. In the DMM class, for
example, base capabilities include performing a DC voltage or current
measurement.

Class extension capabilities: capabilities identified by an IVI Foundation working
group as less common but still supported by multiple instruments withina class. In
the DMM class, forexample, class extension capabilities include temperature
measurement.

Instrument-specific or vendor-specific capabilities: capabilities not
standardized by IVl and unique to a manufacturer’s specific instrument. In the
DMM class, for example, this might be a measurement that uses a thermocouple
tosensethetemperature.

73

Application Program

I} 1

IVI-C
Class
Interface IVI-COM
Specific
IVI-C Class Driver
Compliant
Specific Driver
S =~

I/O Library

Instrumentation Hardware

Nowthatwe’ve defined the capabilities, we canlook ateachdriverintermsofthose
it supports.

Custom Specific Driver: This driver supports only IVl inherent capabilities and
instrument-specific capabilities, butnotbase class or class extension capabilities.
Thisletsinstrumentmanufacturers 1)innovate and provide specialized features,
and 2) supply IVl drivers forinstruments for which no class specification exists,
suchas network analyzers and Bluetooth testers.

Class Compliant Specific Driver: This driver must supportinherentand base
class capabilities. These drivers may also support class extensions and
instrument-specific capabilities. For IVI-C and IVI-COM drivers, a Class Compliant
Specific Driver enables interchangeability through generic instrument Application
Programming Interfaces (APIs) that can be used with a multitude ofinstruments.
Seemore about APIs below.

Class Driver: This driver is used for IVI-C only. A Class Driver also supports
inherent, base class, and all class extension capabilities. A Class Driver enables
instrumentinterchangeability when using IVI-C Class Compliant Specific Drivers.

ForIVI-COMdrivers, the IVl inherent capabilities, custom capabilities, and the
class capabilities may be provided in a single driver. All IVI-COM drivers include
the inherent capabilities. If an [VI-COM driver only has custom and inherent

74

capabilities, itis called an IVI-COM custom driver. If the driver includes the class
capabilities, itis called an IVI-COM Class Compliantdriver. [VI-COM Class
Compliantdrivers may or may notinclude custom capabilities.

Instrument 1/O

AlllVIdriverscommunicate totheinstrumenthardware throughan|/OLibrary. The
VISAlibraryis typically used becauseit provides uniformaccess to GPIB,RS-232,
USB-TMC andLAN instrument. Drivers that communicate withinsruments that
only use RS-232 or LAN occasionally include their own I/O that does not require
VISA.

Shared Components

IVIFoundation members have cooperated to provide common software
components, called IVIShared Components, thatensure compatibilityamong
drivers from various manufacturers. These components provide services to drivers
and driver clients that need to be common to all drivers.

IVIConfiguration Server. Thiscomponentisthe run-time moduleresponsible for
providing configuration datato IVIdrivers. The Configuration Server specifically
provides system initialization and configuration information.

COM Session Factory: This componentcandynamicallyload an [VI-COM
software module without requiring the application program to identify the VI
software module when itis compiled. This allows the test program source code to
have allreferences to a specificinstrumentremoved. This capability is provided in
IVI-C using an IVI-C Class driver.

Interchangeability
One aspectofthe IVl standard is instrument interchangeability, which allows you
to write and compile your program for an instrument from one manufacturer and
then swap it out for the same type of instrument from another manufacturer. After
making changes to a configuration file on your computer to identify the new
instrument (and driver) and the hardware address (if that changes), you can run
your program without modifying or recompiling it. That's in an ideal world, of
course.

Theminimumnecessary requirementsforinterchangeabilityinclude the following:

® Drivers for both instruments must be of the same type (IVI-C or [IVI-COM);

¢ Bothdrivers mustimplementthe sameinstrumentclass. Forexample, both
must conform to the requirements for lviDmm or IviScope;

* ForlVI-C, your program must use a Class Driver, which in turn instantiates the
Class Compliant Specific Driver and calls class compliantfunctionsinit.

* Yourprogram calls only those Class Extension functions supported by both
drivers.

® Yourprogramnever calls Instrument Specificfunctions.

75

® Theinstruments must provide the same behavior, atleast with respect to the
calling program.

Meetingtheserequirementsisnecessarytoachieve “100%” interchangeability.

However, if your application does not meet all of these requirements, in some

cases you may be able to add additional code to your program to handle the

differences between the instruments or drivers you are using and still achieve a

certain degree of interchangeability.

Theimages below depict the functionality of the IVI Configuration Serverand
Configuration Store and COM Session Factory in their role of enabling
interchangeability among IVI-COM and IVI-C drivers.

Interchangeability with IVI-COM

Test System Setup|
Application |

User Test Program

VI Configuration
Server

Compliantia

w v

VI

IYO Library

Configuration

A Store

Instrumentation Hardware

76

Interchangeability with IVI-C

Test System Setup
Application

|

W

User Test Program

'IVI-C Class Driverﬁ-‘—?ir

IVI Configuration
Server

AN

I/O Library

!
|
1

Configuration
Instrumentation Hardware‘I Store

IVI Configuration Store
ThelVIConfiguration Store holdsinformationaboutthe IVIdriversinstalledonyour
computerand configurationinformationforyourinstrumentsystem.Byprovidinga
way to flexibly reference and configure IVIdrivers and instrument /O connections
outside of yourapplication, the IVI Configuration Store makes interchangeability
possible.

Consider an application in which you use a specific driver to communicate with a
specificinstrument model at a fixed location. Change anything —the driver, the
model, the location —and you have to modify the application to accommodate that
change.

That's when the Configuration Store comes into play. An IVl Configuration Store
offers the capability to work with differentinstrumentdrivers, models, orlocations,
without having to modify your application. You canimagine how useful this can be
when using a compiled application that you cannot easily modify.

The IVI Configuration Store contains data that describe: the software modules used
to control the instruments, the hardware assets that perform measurementor
stimulus functions, the driver session thatassociates the software and hardware,
and the logical name that lets you point to a specific session.

SoftwareModule: A SoftwareModule provides information about a particular
instrument driver software componentthatis installed and registered on your
system. This read-only component is commonly provided by the instrument vendor

77

and contains the commands and functions necessary to communicate with the
instrument. You can use the software module entry data to locate the component
onyoursystemanddeterminewhatinstrumentmodelsandclassinterfaces(called
Published APls in the configuration server) are supported by the component.

HardwareAsset: A HardwareAsset describes a specific physical device in your
systemwith which youcommunicate suchasan oscilloscope orpowersupply. The
HardwareAsset includes aresource descriptor—a string that specifies the /O
interface and address of a hardware asset, such as GPIB::23::INSTR.

DriverSession:ADriverSessionprovidestheinformationneededtousea
driverin a particular context. It makes the association between a
SoftwareModuleandaHardwareAsset.ltdefinesasetofproperties foruse
by IVIinstrument driver software modules, such as initial configurable settings for
attributes, virtual name mappings, and simulation settings. You can configure a
DriverSessionforeachinstrument, foreach ofits possible I/O resource
descriptors, and for each program that usesiit.

LogicalName:ALogicalNameisaconfigurable pointertoa particular
DriverSession.Application programsuselogicalnamestoavoid direct
references to software modules and hardware assets. In a typical setup, the
application communicates with aninstrumentviaalogicalname. Ifthe application
needs to communicate with a differentinstrument (for example, the same kind of
scope at a differentlocation), only the logical name within the VI Configuration
Store needs to be updated to point to the new driver session. You don't need to
rewrite any code in the application, because it uses the same logical name.

The illustration below shows how the IVI Configuration Store enables
interchangeability. The application is developed and makes calls via the logical
name. In the illustration, this is shown as DMM. The actual DMM is from
Vendor X at address GPIB1::21::INSTR and uses the Vendor X DMM IVI-COM
driver. In the Configuration Store, the logical name DMM is associated with a
Driver Session that is configured to the specific information of the Vendor X
DMM.

78

Anpicaion | - O O
#mpont md - — —
o | | |
. Vendor X DMM
DMM ... GPIB1:21:INSTR
Vendor X DMM NVICOM Driver
T
| |
VI Configuration Store

<Logical Name> DMM
<Dnver Session> Vendor X DMM
<Hardware Asset> GPIB1::21::INSTR
<Software Module> Vendor X DMM IVI-COM Driver

<Dnver Session> Vendor Y DMM
<Hardware Asset> GPIB0::23::INSTR
<Software Module> Vendor Y DMM IVI-COM Driver

_-..-d

Inthe illustration below, we replace the Vendor X DMM with a Vendor Y DMM. All
we need to dois change the LogicalName so that it points to a different
DriverSession.Inthisexample,changetheLogicalNamesothatitpointtothe
VendorY DriverSession. We do not need to make any modifications to the
applicationitself. Allchanges are contained within the Configuration Store.

Below we show examples of using interchangeability using logical names with IVI-
COMandIVI-C.

79

fication
App EEEEEE

(|
#mport V 00 os
Vendor Y DMV
DMM GPIB0::23:INSTR
Vendor Y DMV NI-COM Driver
/'-_\\'/
1Vi Configuration Store

<Logical Name> DMM

<Dnver Session> Vendor X DMM
<Hardware Asset> GPIB1::21::INSTR
<Software Module> Vendor X DMM IVI-COM Driver

<Dnver Session> Vendor Y DMM
<Hardware Asset> GPIB0::23::INSTR
<Software Module> Vendor Y DMM IVI-COM Driver

m_——/

IVI-COM
This C#example shows interchangeability using llviDriver, which references all of
IVI's inherent capabilities.

liviDriver
Create a string variable for logical name.

string logicalName = "AgilentDriver";

Add a reference to the Session Factory. Go to Project and Add Reference.
Select the IVI Session Factory Type Library under the COM tab.

Create an instance of the Session Factory.

IIviSessionFactory factory = new IviSessionFactoryClass();
Set the type to match the referenced IVI Instrument Class, for class
interchangeability. This example uses llviDriver, because it is common to all
drivers. This uses the Session Factory to create a driver based on the logical
name "AgilentDriver."

In the Configuration Store, logical name "AgilentDriver" points to a driver

session. The driver session points to a software module, which can be any IVI-
COM driver. The Session Factory creates an instance of the driver and returns

80

a reference to the instance of the driver. This line of code then casts the
reference returned to type IlviDriver, from which all of IVI’s inherent capabilities
can be referenced.

IIviDriver driver =
(IIviDriver) factory.CreateDriver (logicalName) ;

Initialize is required, because the Session Factory does not take care of that
function.

driver.Initialize(logicalName, true, true);

Identity is a property of llviDriver that references the llviDriverldentity interface.
Identifier is a property of llviDriverldentity interface that returns a string that
identifies the driver.

string identifier = driver.Identity.Identifier;
Print the string.

Console.WriteLine ("Identifier: {0}", identifier);

llviDmm

If we want the code to use multiple drivers that all support the DMM class and use
the IVI DMM class interfaces, we must modify it as shown below. Note thatonly IVI-
COM drivers thatimplement the IVI DMM class will work with this program.

Create a string variable for logical name.

string logicalName = "LineVoltage";

Create an instance of the Session Factory.

IIviSessionFactory factory = new IviSessionFactoryClass();
Set the type to match the referenced IVI Instrument Class for class

interchangeability. This code for IlviDmm uses the factory to create a driver
based on the logical name "LineVoltage."

In the Configuration Store, logical name "LineVoltage" points to a driver
session. The driver session points to a software module, which can be any IVI-
COM driver. The Session Factory creates an instance of the driver and returns
a reference to the instance of the driver. This line of code then casts the
reference returned to type llviDmm, from which all of IVI DMM’s class-
compliant features can be referenced.

IIviDmm dmm = (IIviDmm) factory.CreateDriver (logicalName);

Initialize is required, because the session factory does not take care of that
function.

dmm.Initialize(logicalName, false, false, “simulate=true”);

81

The rest of the code follows that used for the examples, but note that it is written to
theclass-compliantinterfaces, nottheinstrument-specificones.

dmm.Configure (IviDmmFunctionEnum. IviDmmFunctionDCVolts, 1.5,
0.001);

dmm.Trigger.Delay=0.01;
Console.WritelLine (dmm.Measurement.Read (1000) .ToString());

dmm.Close () ;
IVI-C

This C example shows how to use an IVI-C Class Driver to achieve
interchangeability. Itis very similar to the IVI-C examples in Chapters 2and 5
exceptfor 3 differences:

The function calls are all for the class driver and do not refer to the particular
instrument being used, e.g., viDMM_Read vs. HP34401A_Read

The parameters in certain function calls are generic for the instrument class
and do not refer to the particular instrument being used, e.g.,
IVIDMM_VAL_DC VOLTSvs.HP34401A_VAL_DC_VOLTS

The initialize function refers to a logical name instead of the instruments
physical address, in this case “SampleDMM” vs. “GPIB0::23::INSTR”

In order to interchange a different DMM for the Agilent 34401A DMM, you would
updateyourconfigurationstoretohavethelogicalname“SampleDMM”pointtothe
new instrument’s Driver Session.

This is what the code for the example used in this guide would look like using and
IVI-C classdriver.

staticViReal64 reading;

static ViSession session;

IviDMM InitWithOptions ("SampleDMM", VI FALSE,
VI TRUE, "Simulate=1", &session);

IviDMM ConfigureMeasurement (session, IVIDMM VAL DC VOLTS,
1.5, 0.001);

82

IviDMM ConfigureTrigger (session, IVIDMM VAL IMMEDIATE,
0.01);

IviDMM Read (session, 1000, &reading);
printf ("%f", reading);

IviDMM close (session);

Editing the Configuration Store

Ifyou installed the IVl Shared Components in the defaultlocation, you will find the
Configuration Storeinformation in afile named IviConfigurationStore.xmlin
C:\ProgramFiles\IVI\Data. Recentversions of Microsoft Internet Explorercan
display .xmlfiles. If you double-click on the file, a copy of Internet Explorer should
start and you can view the contents of the file.

But we do mean view, not edit; you should use an IVI configuration utility or the IVI
Configuration Store API to make changes to the Configuration Store file. You can
usually obtain these utilities with your VI driver, instrument, or ADE.

Important! Never make changes directly to the Configuration Storefile.
Instead use an IVl configuration utility or the IVI Configuration Store API.

The configuration server provides much more functionality thanitis possible to
describehere.Formoreinformation,seethe|VIConfiguration Serverspecification
at http://ivifoundation.org/specifications/default.aspx or contact your IVI provider.

FutureDevelopmentofiVI
Onefeature of IVIthatgivesitan advantage overotherinstrumentdriversis simply
thatit’s still actively evolving. Current IVl work focuses on the following:
* Keeping up-to-date with technology, including 64-bit integers and new Windows
operating system compatibility;

¢ Keepingup-to-date withadvances intestand measurement, including LXI
technology;

* Developing new class specifications for digitizers, counter timers, and synthetic
instruments

¢ Developing a .NET standard that will optimize IVI drivers for use in .NET.

IVIDriversinAction
IVIGetting Started Guide contains a single example in many different ADEs. You
probably work primarily in a single ADE but would benefit from seeing other
examples thatuse IVIdrivers. Examples are available from two primary sources:

1 Vendors who provide VI drivers frequently show examples of their use in test
applications on their Web site. Visit the vendor’s site and search for “IVI
drivers” to find information on and examples of driver use.

83

2 Several vendors include examples as part of driver installation. For the Agilent
34401A driver (from Agilent Technologies) we use in some of the examples
throughout the guide a folder, located at C:\Program Files\IVI\Drivers\Agilent
34401\Examples, contains examples that show its use in a variety of different
environments.

Finally, contact your driver vendor for help. Even if the vendor hasn’t published
examplesonline orincluded them during installation, they may have samples that
you can use to build a program.

84

