N4
Geftting Started
with
IVI Drivers

Your Guide to Using IVI with
LabVIEW™

Version 1.2

© Copyright IVI Foundation, 2015
All rights reserved

The 1VI Foundation has full copyright privileges of all versions of the IVI Getting
Started Guide. For persons wishing to reference portions of the guide in their
own written work, standard copyright protection and usage applies. This
includes providing a reference to the guide within the written work. Likewise, it
needs to be apparent what content was taken from the guide. A recommended
method in which to do this is by using a different font in italics to signify the
copyrighted material.

Chapter 1

Chapter 2

Contents

INtroduCtion........cc i ——— 4
PUMPOSE ...t eneeas 4
Why Use an InstrumentDriver? ... 4
WY IVI? ettt e ens 5
Why USe an IVIDIIVEI?coouiiiiiiie et 7
FIavors Of IVIDIIVETScoouiiiiieiiee et 8
Shared COMPONENTSooiiiiie e 8
Downloadand Install IVIDFVErScceoiiiiiii e 8
Familiarizing Yourselfwiththe Driver...........ccooooiiiiiieniieccee e 9
EXAMPIES .. 9
Using IVI with LabVIEW™ooeeereeerssesessssssssssssssssessssssssssans 12
The ENVIFONMENT ..o e 12
Example ReqUIremMentsccooiiiii e 12
Downloadand Installthe Driver ..o 12
USING IVI-C e e 12
CreateaVland Accessthe Driver..........cocoviiiiiii e 13
Initialize the INStrUMENt..........c.coi i 14
Configure the INStrument ... 15
TaketheReadingccoiiiiiii i 15
DisplaytheReadingc.ccoooieiiiiiiiiee e 16
ClosSethe SeSSIONcoceiiiiiiie e 16
AdAEror CheCKingcooeiiiiiiee e 16
Runthe Application ... 16
Setting a Property in an IVI-C DRVer ... 17
USING IVI-COM ...t e e 17
CreateaVland Accessthe Driver.........ococoviiiiiiii e 17

Initialize the INSTrUMENteeeiiee e 19

Configure the Instrument.............ccoiiiiiiiii e 20
Take the Readingc.cviiiiiiiii e 21
Display the Readingccooceeiiiiiiiiiiieee e 21
Close the Driver and Automation SessSions...........cccvveveerieeiieenneenn, 21
Add Error CheCKiNgGcciueeeiiiiiee et 21
Run the Application ... 22
Further Information ..o 12

Chapter 1
Introduction

Purpose

Welcome to Getting Started with IVI Drivers: Your Guide to Using IVI with
LabVIEW™ This guide introduces key concepts about VI drivers and shows you
how to create a short program to perform a measurement. The guide is part of the
IVIFoundation’s series of guides, Getting Started with IVI Drivers.

Getting Started with IVI Drivers is intended for individuals who write and run
programsto controltest-and-measurementinstruments. Each guidefocusesona
differentprogramming environment. As you develop test programs, you face
decisionsabouthowyoucommunicate withtheinstruments. Someofyourchoices
include Direct /O, VXlplugé&play drivers, or IVI drivers. If you are new to using IVI
drivers orjust want a quick refresher on the basics, Getting Started with IVI
Driverscanhelp.

Getting Started with IVI Drivers shows that VI drivers can be straightforward,
easy-to-use tools. VI drivers provide a number of advantages that can save time
and money during development, whileimproving performance as well. Whether
you are starting a new program or making improvements to an existing one, you
should consider the use of VI drivers to develop your test programs.

So consider this the “hello, instrument” guide for VI drivers. If you recall, the “hello
world” program, which originally appearedin Programming in C: A Tutorial, simply
prints out “hello, world.” The “hello, instrument” program performs a simple
measurementonasimulatedinstrumentand returnsthe result. We think you'llfind
that far more useful.

Why UseanlInstrumentDriver?
Tounderstand the benefits of IVI drivers, we need to start by defining instrument
driversin generaland describing why they are useful. Aninstrumentdriveris a set
of software routines that controls a programmable instrument. Each routine
corresponds to a programmatic operation, such as configuring, writing to, reading
from, andtriggering the instrument. Instrumentdrivers simplify instrument control
and reduce test program development time by eliminating the need to learn the
programming protocol for each instrument.

Startinginthe 1970s, programmers used device-dependentcommands for
computercontrolofinstruments. Butlack of standardizationmeanteventwodigital
multimeters from the same manufacturer might not use the same commands. In
the early 1990s a group of instrument manufacturers developed Standard

Commands for Programmable Instrumentation (SCPI). This defined setof
commands for controlling instruments uses ASCII characters, providing some
basic standardization and consistency to the commands used to control
instruments. For example, when you want to measure a DC voltage, the
standard SCPI command is “MEASURE : VOLTAGE : DC?".

In 1993, the VXIplug&play Systems Alliance created specifications forinstrument
drivers called VXlplug&playdrivers. Unlike SCPI, VXIplug&play drivers do not
specify how to control specificinstruments; instead, they specify some common
aspects of an instrument driver. By using a driver, you can access the instrument
by calling a subroutine in your programming language instead of having to format
and send an ASCl| string as you do with SCPI. With ASCII, you have to create and
send the instrument the syntax “MEASURE : VOLTAGE : DC?”, thenread back a
string, and builditinto a variable. With a driver you can merely call a function called
MeasureDCVoltage() and passita variable to return the measured voltage.

Although you still need to be syntactically correctin your calls to the instrument
driver, making calls to a subroutine in your programming language is less error
prone. Ifyou have been programming to instruments withouta driver, thenyou are
probablyalltoofamiliarwith huntingaround the programming guide tofind theright
SCPI command and exact syntax. You also have to deal with an I/O library to
format and send the strings, and then build the response string into a variable.

Why IVI?

The VXIplug&playdrivers do not provide acommon programming interface. That
means programming a Keithley DMM using VXlplug&play still differs from
programming a Keysight DMM. Forexample, the instrumentdriver interface forone
may be ke2000_read while another may be ag34401_getorsomething even
farther afield. Without consistency acrossinstruments manufactured by different
vendors, many programmers still spentalot of time learning each individual driver.
Tocarry VXlplugé&play drivers a step (or two) further, in 1998 a group of end users,
instrumentvendors, software vendors, system suppliers,and systemintegrators
joined together to form a consortium called the Interchangeable Virtual Instruments
(IV1) Foundation. If you look at the membership, it’s clear that many of the
foundation members are competitors. But all agreed on the need to promote
specifications for programmingtestinstruments thatprovide better performance,
reduce the cost of program developmentand maintenance, and simplify
interchangeability.

Forexample, forany|VIdriverdevelopedforaDMM, the measurementcommand is
lviDmmMeasurement.Read, regardless of the vendor. Once you learn how to
program the commands specified by IVIfor the instrument class, you can use any
vendor’sinstrumentand not need to relearn the commands. Also commands that
are common to all drivers, such as Initialize and Close, are identical regardless of

the type of instrument. This commonality lets you spend less time browsing
through the help files in order to program an instrument, leaving more time to
get your job done.

That was the motivation behind the development of IVIdrivers. The IVI
specifications enable drivers with a consistent and high standard of quality,
usability, and completeness. The specifications define an open driver architecture,
asetofinstrument classes, and shared software components. Togetherthese
provide consistency and ease of use, as well as the crucial elements needed for
theadvancedfeatures|IVIdrivers support:instrumentsimulation, automaticrange
checking, state caching, and interchangeability.

The IVIFoundation has created |Vl class specifications thatdefine the capabilities

fordrivers for the following thirteen instrument classes:

Class IVI Driver
Digital multimeter (DMM) IviDmm
Oscilloscope IviScope
Arbitrary waveform/function generator IviFgen

DC powersupply IviDCPwr
AC power supply IVIACPwr
Switch IviSwtch
Power meter IviPwrMeter
Spectrum analyzer IviSpecAn
RF signalgenerator IVIRFSigGen

Upconverter IviUpconverter
Downconverter IviDownconverter
Digitizer IviDigitizer
Counter/timer IviCounter

IVIClass Compliantdrivers usually also include capability thatis not part of the IVI
Class. Itis common for instruments that are part of a class to have numerous
functions that are beyond the scope of the class definition. This may be because
the capability is not common to all instruments of the class or because the
instrument offers some control that is more refined than what the class defines.

IVl also defines custom drivers. Custom drivers are used for instruments that are
not members of a class. For example, there is not a class definition for network
analyzers, so a network analyzer driver must be a custom driver. Custom drivers
provide the same consistency and benefits described below for an IVI driver,
exceptinterchangeability.

IVIdrivers conform to and are documented according to the VI specifications and
usually display the standard IVl logo.

Why Use an IVIDriver?

Why choose IV drivers over other possibilities? Because VI drivers can increase
performance and flexibility for more intricate testapplications. Here are afew of the
benefits:

Consistency — VI drivers all follow a common model of how to control the
instrument. That saves you time when you need to use a new instrument.

Ease of use — |Vl drivers feature enhanced ease of use in popular Application
Development Environments (ADEs). The APIs provide fast, intuitive access to
functions. IVI drivers use technology that naturally integrates in many different
software environments.

Quality — VI drivers focus on common commands, desirable options, and
rigorous testing to ensure driver quality.

Simulation - VI drivers allow code development and testing even when an
instrumentis unavailable. Thatreduces the need for scarce hardware resources
and simplifies test of measurement applications. The example programs in this
document use this feature.

Range checking — VI drivers ensure the parameters you use are within
appropriate rangesforaninstrument.

State caching — |Vl drivers keep track of an instrument’s status so that /O is only
performed when necessary, preventing redundant configuration commands from
being sent. This can significantlyimprove test system performance.

Interchangeability — VI drivers enable exchange of instruments with minimal
code changes, reducing the time and effort needed to integrate measurement
devicesintoneworexistingsystems. The[VIclass specifications provide syntactic

interchangeability but may not provide behavioral interchangeability. In other
words, the program may run on two different instruments but the results may
not be the same due to differences in the way the instrument itself functions.

Flavors of IVIDrivers
To support all popular programming languages and development environments, VI
drivers provide either an IVI-C or an IVI-COM (Component Object Model) API.
Driver developers may provide either or both interfaces, as well as wrapper
interfaces optimized for specific development environments.

Although the functionality is the same, IVI-C drivers are optimized foruse in ANSI
C development environments; IVI-COM drivers are optimized for environments
that support the Component Object Model (COM). IVI-C drivers extend the
VXlplugé&play driver specification and their usage is similar. [IVI-COM drivers
provide easy access toinstrumentfunctionality through methods and properties.

AlllVIdriverscommunicate totheinstrumentthroughan1/O Library. Ourexamples
use the Virtual Instrument Software Architecture (VISA), a widely used standard
library forcommunicating with instruments from a personal computer.

Shared Components
Tomake it easier for you to combine drivers and other software from various
vendors, the IVIFoundation members have cooperated to provide common
software components, called I1VI Shared Components. These components provide
services to drivers and driver clients that need to be common to all drivers. For
instance, the [Vl Configuration Serverenables administration of system-wide
configuration.

Important! You mustinstallthe IVIShared Components before anIVIdriver
canbeinstalled.

The IVI Shared Components can be downloaded from vendors’ web sites as well
as from the IVI Foundation Web site.

Todownload and install shared components from the IVl Foundation Web site:
1 Go to the IVI Foundation Web site at http://www.ivifoundation.org.

2 Locate Shared Components.

3 Choose the IVI Shared Components msi file for the Microsoft Windows Installer
package or the IVl Shared Components exe for the executable installer.

DownloadandInstalllVIDrivers
Afteryou’veinstalled Shared Components, you'rereadytodownloadandinstallan
IVIdriver. For most ADEs, the steps to download and install an VI driver are
identical. Forthe fewthatrequire adifferent process, the relevant Getting Started
with IVI Drivers guide provides the information you need.

10

IVI Drivers are available from your hardware or software vendor’s web site or by
linking to them from the IVl Foundation web site.

To see the list of drivers registered with the IVI Foundation, go to
http://www.ivifoundation.org.

Familiarizing Yourself with the Driver

Examples

Althoughthe examplesin Getting Started with IVI Drivers use a DMMdriver, you
will likely employ a variety of VI drivers to develop test programs. To jumpstart
that task, you'll want to familiarize yourself quickly with drivers you haven’'tused
before. Most ADEs provide a way to explore VI drivers to learn their functionality.
In each IVI guide, where applicable, we add a note explaining how to view the
available functions. In addition, browsing an IVI driver’s help file often proves an
excellentway tolearn its functionality.

As we noted above, each guide in the Getting Started with IVI Drivers series
shows you how to use an IVl driver to write and run a program that performs a
simple measurement on a simulated instrumentand returns the result. The
examples demonstrate common steps using VI drivers. Where practical, every
example includes the steps listed below:

* Download and Install the IVI driver— covered in the Download and Install IVI
Drivers section above.

¢ Determine the VISA address string— Examples in Getting Started with IVI
Drivers use the simulate mode, so we chose the address string
GPIB0::23::INSTR, often shown as GPIB::23. Ifyou need to determine the
VISA address string for your instrument and the ADE does not provide it
automatically, use an 10 application, such as National Instruments
Measurementand Automation Explorer (MAX)orAgilent Connection Expert.

* Referencethedriverorloaddriverfiles—Forthe examplesinthe IVIguides, the
driver is the IVI-COM/IVI-C Version 1.2.5.0 for 34401A, April 2013 (from
Keysight Technologies) ... or the Keysight 34401A IVI-C driver, Version
4.5,January 2015 (from National Instruments).

* Create aninstance of the driver in ADEs that use COM — For the examples in
the IVIguides, thedriveris the Agilent34401 (IVI-COM) or hp34401a(IVI-C).

* Writethe program:

¢ Initialize the instrument — Initialize is required when using any IVI driver.
Initialize establishes a communication link with the instrumentand must
be called before the program can do anything with the instrument. We set
resettotrue, ID query to false, and simulate to true.

Setting reset to true tells the driver to initially reset the instrument.
Setting the ID query to false prevents the driver from verifying that the
connected instrument is the one the driver was written for. Finally,
setting simulate to true tells the driver that it should not attempt to
connect to a physical instrument, but use a simulation of the
instrument.

1

® Configuretheinstrument—We setarange of 1.5 volts and a resolution of
0.001 volts (1 millivolt).

® Accessaninstrument property — We set the trigger delay to 0.01
seconds.

® Setthe reading timeout—We set the reading timeout to 1000
milliseconds (1 second).

®* Takeareading

* Closetheinstrument— This step is required when using any IVI driver,
unless the ADE explicitly does not require it. We close the session to free
resources.

Important! Closemaybethemostcommonly missedstepwhenusingan
IVidriver. Failing to do this could mean that system resources are not
freed up and your program may behave unexpectedly on subsequent
executions.

® Checkthe driverforany errors.

¢ Displaythereading.

Note: Examples that use a console application do not show the display.

Now that you understand the logic behind IVI drivers, let’s see how to get started.

12

Chapter 2
UsingIViwithLabVIEW™

The Environment
NationalInstrumentsLabVIEW is agraphicaldevelopmentenvironmentforsignal
acquisition, measurement analysis, and data presentation. LabVIEW provides the
flexibility of a programming language with less complexity than traditional
development tools.

Example Requirements
* LabVIEW 2011 orlater

* [VI-C: Keysight 34401A IVI-C driver, Version 4.5, January 2015 (from
National Instruments)

* |VI-COM: Keysight 34401A IVI-COM/IVI-C driver, Version 1.2.5.0, April
2013 (from Keysight Technologies)

Note: These drivers may require an I/O library to be installed. Check the driver
vendor’s Web site for details.

Note: |VI-C driver requires the NI IVI Compliance Package to be installed.
Check National Instruments Web site for details.

Download andInstallthe Driver

Ifyou have notalready installed the driver, go to the vendor Web site and follow the
instructions to download and install it.

Since LabVIEW supports both IVI-C and IVI-COM drivers, this example is written
two ways, first to show how to use an IVI-C driver in LabVIEW, and second how to
use an VI-COMdriverin LabVIEW.

Using IVI-C
AllIVI-C drivers provide a Dynamic Link Library (DLL) interface. While LabVIEW
providesthe CallLibrary FunctionnodetocallDLLs, many IVI-Cdrivers alsocome
with a LabVIEW wrapper that provides the familiar Vl interface to the driver’s
functions, making it easier to use in LabVIEW. If your IVI-C driver does nothave a
LabVIEW wrapper, you can create one using a free tool by clicking on LabVIEW
InstrumentDriverImportWizard at:

http://www.ni.com/devzone/idnet/development.htm.

Note: The functionality shown in this section is available in a LabVIEW example
supplied with the IVIdriver from National Instruments.

13

Create aVland Access the Driver

1
2

Launch LabVIEW.

From the File menu, select New VI. The Front Panel and Block Diagram
appear.

Right-click in the Block Diagram. The Functions palette appears.

Select the Instrument I/O subpalette and then the Instrument Drivers
subpallete. You can access all instrument driver Vis from this palette.
Click Instrument Drivers. Select hp34401a from the palette.

Select the hp34401a IVI driver from the palette.

Note: Ifthe driver you want to use is notlisted, download and installthe driver, and
closeandrestartLabVIEW. The drivershouldnow appearinthe palette. The driver
palette allows you to browse the various VIs and functionality supported by the
driver.

FER

= I¥1 Demo (I¥1-C).vi Block Diagram

Fle ESt Yew Project Qperste Jook Widow Heb
(S]@] @ [0][§][2] leoferlor 13 Axkasnror ~](3ax][we"] B

' [0
1 4=

Connactity V Instr Deivers

Cortrol Desion b Sebston ' g&mvg o @

Sonageess { o) o 3 he3sots

Expeess VSA Aginck 34401 Pp4401a

Adsons » e

Faverkes
User Liearies
4 Sednct 2 V1

).
POMA01a IN... POMSOTAIN... POM401AYI,
» » » .
= L g
o e & L
Configuration Measurement Uniy

TestSand »
Pp3401a o

14

Initialize the Instrument
1 Select Initialize With Options VI from the hp34401a palette and place it on the
Block Diagram.

B! V1 Demo (IVI-C).vi Block Diagram * =3

File Edit View Project Operate Tools Window Help

@ @n ba | |of | 13pt Application Font |« ||=Dv'|:ﬁ:v|

[FFEad0]

eI

arLI04]

|~
v

2 Create constants and enter values for instrument resource name, ID Query,
Reset, and IVI option string:
* GPIB0::23::INSTRintheinstrumentresource namefield
® Trueinthe ID Query field
® Trueinthe Resetfield
¢ Simulate=1inthe Optionsfield

Note: To create a constant, control, orindicator, right-click on the desired input
terminaland select Create.

15

Configure the Instrument

P I¥1 Demo (I¥I-C).vi Block Diagram * Q@@

File Edt View Project Operate Tools Window Help

@@ lba@] o [136t Appication Fort |~][~ |[Ta]

< GPIBO::23::INSTR [+]

1 From the Configuration subpalette, select Configure Measurement VI and
place it on the Block Diagram.

2 Create constants and enter values to set the resolution to 1 millivolt, the
function to DC Voltage, and the range to 1.5 volts:
® 0.001 inthe Resolution field
* DC volts inthe Measurement Function field
* 1.5inthe Range field

3 Connectthe instrument handle and error terminals from Initialize With Options
VI to Configure Measurement VI.

4 From the Trigger subpalette, select Configure Trigger VI and place it on the
Block Diagram.

5 Connectresource name and error information from Configure Measurement VI
to Configure Trigger VI.

6 Create a constant and enter a value of 0.01 in the Trigger Delay field.

Note: You can also setthe Trigger Delay using a Property Node by replacing steps
4 & 5 with a property access as shown in the section “Setting a Property in an IVI-
C Driver’below.

Take the Reading
1 Return to the main hp34401a palette. From the Measurement subpalette,
select Read VI and place it on the Block Diagram.

2 Set the value for Maximum Time to 1 second (1000 ms). Enter 1000 in the
Maximum Time field.

16

3 Connect resource name and error information from Configure Trigger to Read
VI.

Display the Reading
Create anindicator for Reading from the terminal on the Read VI.

Close the Session
1 Returnto the main hp34401a palette. Select Close VI and place it on the Block

Diagram.
2 Connect resource name and error information from Read VI to Close VI.

Note: LabVIEW compiles while developing, which lets you check the program
execution atanytime.

Add Error Checking
1 Return to the main functions palette. From the Dialog & User Interface
subpalette select Simple Error Handler VI and place it on the Block Diagram.

2 Connect the error information from Close VI to Simple Error Handler VI.

Run the Application
Yourfinal VI Block Diagram should contain the elements shown below. Torun your
VI:

1 Switch to the VI's Front Panel and click on the Run arrow to run the application.
2 The Reading indicator should display a simulated reading from the instrument.

P I¥I Demo (I¥I-C).vi Block Diagram
File Edt View Project Operate Tools MWindow Help

\Q\@Dﬁ [13pt Application Font |~ | (2o~ |[Ga~ | i

Resolution [0.001]
Measurement Function [DC Yolts |

Read

Timeout

[GPIB::23::INSTR |7}
IdQuery s
Reset

—Nﬁa“
L

O R R

Range [iﬂ
TriggerDelay

17

Setting a Property in an IVI-C Driver

Properties such as Trigger Delay can also be set (and read) with a property node.
This is importantin cases where a configuration function is not provided by the
driver.

Forexamplewe canreplace steps4 and 5 ofthe “Configure the Instrument”section
with:

From the Functions palette select Application Control and drop a Property
Node on the Block Diagram.

Connect the resource name and error information from Configure
Measurement VI to the Property Node.

Right-click on the Property Node and select Change All to Write.
Click on the Property field and select Trigger >> Trigger Delay.

B IVl Demo (IVI-C) wProperty.vi Block Diagram

File Edit View Project Operate Tools Window Help
c{)l@l 'Q@Ml'ﬁ’luﬁ | 13pt Application Font |+ ”;pv| .”n:vl |C§7v‘ ~ 2
~
Resolution
Measurement Function
Read
Timeout -
m [>11.23°
[, GPIB0::23: INSTR [» -_‘ — =
IdQuery [@¥]- CLEEE Nﬂm- mw
(= -] 1 :
Reset B0 oo oo G0 |5 = hp344013 S| 54
> Trigger Delay
Range
TriggerDelay
v
< >
Using IVI-COM

Touse IVI-COM drivers in LabVIEW you will use the ActiveX functions and the

Class Browser that are built-in to LabVIEW.

Create aVland Access the Driver
1 Launch LabVIEW.

18

From the File menu, select New VI. The Front Panel and Block Diagram
appear.

Right-click in the Block Diagram. The Functions palette appears.

Select the Connectivity subpalette and then the ActiveX subpallete. From this
palette, you can access ActiveX and COM objects including all IVI-COM
drivers.

Select Automation Open from the palette and place it on the block diagram.

P 1I¥1 Demo (IV¥I-COM).vi Block Diagram
File Edit View Project Operate Tools Window Help

©[m] o[130t Applcation Font

~1[For][5e-] (5]

<X] Functions g Search! B
Programming »
» =n
=]
Structures Array
231" = ¢
> H
Numeric File 1jO
| I> |
B
Comparison

g9
il g
2

E

Dial

g

2
®
c
&
8
=
b
o
3
g
3

[0
=]

£

g

Synchronization Graphics & So...

Report Gener...

Measurement IfO »

Instrument IjO »

Vision and Motion >

Mathematics »

Signal Processing »

Data Communication »

Connectivity »

Control Design & Simulation] 4] Connectivity

SignalExpress X ActiveX

Express) m M ¥ 41 Activex

Addons) ! @I ﬁl Automation Open

Favorites) Libraries & Ex... Source Control Port IjO reD) #.‘

User Libraries) &

< | Select aVI... LQ Automation O... Close Refere... To Variant Variant To Data

- Multisim Tools

5 5 B

NET

Input Device ...

ActiveX

E5

Property Node

Static VI Refe...

B

Invoke Node

Reqgister Eve...

s

Unregister Fo...

6 Right-click on the Automation Refnum terminal, select Select ActiveX Class...
and then Browse...

19

7 From the Type Library drop-down, select the IVI Agilent 34401A (Agilent
Technologies) 1.2 Type Library Version 1.2, and then select the |Agilent34401
object. Click OK.

Note: Ifthe IVI-COM driver you want to use is not listed, download and install the

driver and close and restart LabVIEW. The driver should now appear in the type
library browser.

. Select Object From Type Library

Type Library

IVI Agilent34401 1.2 Type Library Version 1.2, Browse

Objects

Show Creatable Objects Only
o Agilent34401 (Agilent34401.Agilent34401.1) A~

IAqilent34401AC

IAqilent34401ACCurrent
IAgilent34401ACYoltage
IAqilent34401Advanced
IAqilent34401Calibration

vu -l DR I L i T i .

v

[QK Cancel [Help

Initialize the Instrument
1 From the View menu, select Class Browser. The Class Browser allows you to
invoke methods and set or get properties of the ActiveX/COM object.
2 From the Object library drop-down, select ActiveX and then Select Type
Libraries.
3 Scrolldown and select the VI Agilent 34401A (Agilent Technologies) 1.2 Type
Library Version 1.2, Click OK.

20

File Edit Yiew Project Operate Tools Window Help

:; ’E] ‘E@Dﬂ | 13pt Application Font - ”;pv "ﬁvl

B! 1¥1Demo (IVI-COM).vi Block Diagram (](=1E3]
)

Back in the Class Browser, under Properties and Methods, scroll down and
select Initialize. Click Create and drag the Invoke Node to the Block Diagram.

Create constants and enter values for ResourceName, IDQuery, Reset, and
OptionString:

GPIB0::23::INSTR in the instrument ResourceName field

® Falseinthe IDQuery field

* Trueinthe Resetfield

¢ Simulate=1inthe OptionStringfield

Connect the automation refnum and error terminals from Automation Open to
Initialize Invoke Node.

Note: Instead of using the Class Browser, you can select an Invoke Node from the
ActiveX subpalette and selectthe Initialize method. Toaccess driver properties,
you can select a Property Node from the ActiveX subpalette and selectthe
appropriate property oryou canusethe Class Browserforboth IVI-Cand IVI-COM
drivers.

Agilent34401Lib.IAgilent34401

| 3 " IAgilent34401 §
Initialize

GPIB::23::INSTR |~ Resourcelame
b 1dQuery
OCHEEl Reset

b OptionString

Configure the Instrument

1

Go back to the Class Browser, and under Properties and Methods, double-click
the DC Voltage property and select the Configure method. Click Create and
drag the Invoke Node to the Block Diagram.

Create constants and enter values to set the Resolution to 1 millivolt and the
Range to 1.5 volts:

® 0.001inthe Resolution field
* 1.5inthe Range field

21

Take the Reading
1

Connect the automation refnum and error terminals from Initialize Invoke Node
to DCVoltage.Configure Invoke Node.

In the Class Browser, go back to the top-level object and double-click the
Trigger property and select the Delay property. Click Create Write and drag the
Property Node to the Block Diagram.

Create a constant and enter a value of 0.01 seconds for the Delay field.

Connect the automation refnum and error terminals from DCVoltage.Configure
Invoke Node to Trigger.Delay Property Node.

Return to the Class Browser, and under Properties and Methods, double-click
the Measurement property and select the Read method. Click Create and drag
the Invoke Node to the Block Diagram.

Set the value for Timeout to 1 second (1000 ms) by entering 1000 in the
MaxTimeMilliseconds field.

Connect the automation refnum and error terminals from Trigger.Delay
Property Node to Measurement.Read Invoke Node.

Display the Reading

Create anindicatorfor Measurement.Read from the Invoke Node terminal.

ClosetheDriverand Automation Sessions

1 Returnto the Class Browser, and under Properties and Methods, double-click
the Close method. Click Create and drag the Invoke Node to the Block
Diagram.

2 Closethe Class Browser. From the ActiveX subpalette, select Close Reference
and place on the Block Diagram.

3 Connect the automation refnum and error terminals from Measurement.Read
Invoke Node to Close Invoke Node and then to Close Reference function.

Add Error Checking

1 Return to the main functions palette. From the Dialog & User Interface
subpalette select Simple Error Handler VI and place it on the Block Diagram.

2 Connect the error information from Close Reference function to Simple Error

Handler VI.

22

Run the Application
Yourfinal VI Block Diagram should contain the elements shown below. Torun your
VI:

1 Switch to the VI's Front Panel and click on the Run arrow to run the application.
2 The Reading indicator should display a simulated reading from the instrument.

B! I¥1 Demo (I¥I-COM).vi Block Diagram

File Edit Yiew Project Operate Tools Window Help
O[] (@] [25] [walr@P] o [130t Applcation Fort |~ |35~ 5a~
-~
jlent34401Lib. IAgilent34401
S
= 5 *# Iagient34401 § 2% Iagient34401 G115 = Iagi 01 B[} "+ 1agi 01 Rl{% *+ IAgient34401 BL|
o Initialize: DCvoltage.Configure | — Trioger Delay | Measurement.Read o | Close |
GPIB::23::INSTR [~ Resourcellame EF» Rang "MaxTimeMiliseconds Read]
L2 @} 1dQuery » Resolution
=] Reset ﬁ ;m pli2s.
Simulate=1 [OptionString m m
v
< 2

Further Information
Learn more about using an Minstrument driver in LabVIEW in this tutorial:
http://www.ni.com/tutorial/4556/en/.

23

