

Getting Started

with

IVI Drivers

Guide to Using IVI.Net Drivers
with Visual C# and Visual Basic

.NET

Version 1.0
Aug 8, 2016

© Copyright IVI Foundation, 2016
All rights reserved

The IVI Foundation has full copyright privileges of all versions of the IVI Getting

Started Guide. For persons wishing to reference portions of the guide in their

own written work, standard copyright protection and usage applies. This

includes providing a reference to the guide within the written work. Likewise, it

needs to be apparent what content was taken from the guide. A recommended

method in which to do this is by using a different font in italics to signify the

copyrighted material.

3

 Table of Contents
Chapter 1 Introduction…………………………………………………………………………………………….... 4

 Purpose……………………………………………………………………………... 4
 Why Use an Instrument Driver? ………………………………….……………… 4
 Why IVI? ……………………………………………………………………….…… 5
 Why Use and IVI Driver? …………………………………………….…………… 7
 Flavors of IVI Drivers……………………………………………………………… 8
 VISA I/O Library…………………………………………………………………….. 8
 Shared Components……………………………………………………………….. 9
 Download and Install Drivers……………………………….…………………….. 9
 Familiarizing Yourself with the Driver………………………….………………… 10
 Examples…………………………………………………………………………… 11

Chapter 2 Using IVI.NET with Visual C# and Visual Basic .NET………………….…………… 12

 The Environment………..…………………………………………………………... 12
 Example Requirements…..….. …………………………………….……………… 12
 Download and Install river………….………………………………………….…… 12
 Create a New Project and Reference the Driver…….…………….…………… 13
 Create an Instance of the Driver…………………..…………….……………….. 14
 Use Object Browser for Help….………………………………………………….. 15
 Configure the Instrument …..……………………………….…………………….. 17
 Display the Results……………..….…………………………….………………… 18
 Check for Errors….………………………………………………………………… 18
 Close the Session.………………………………………………………………… 19
 Build and Run the Application……….…………………………………………… 20
 Visual Basic.NET Example Code……..…………………………………………… 21
 Further Information………………….……………………………………………… 23

Chapter 3 IVI-COM vs IVI.NET………………………………………………………………………………. 24

 Overview……………………………………….……………………………………. 24
 IVI Driver Source Code……………………………………………………………. 25
 Side-by-side Deployment of IVI Drivers…..………………………………………. 25
 PrecisionTimeSpan…………………………………………………………………. 26
 IVI.NET’s Richer Type System…………………………………………………….. 26
 Initializing the Driver……………………………………………………………….. 26
 Error Handling………………………………………………………………………. 27
 Events from the Driver….………………………………………………………….. 27
 Syntax for Enumerations and Repeated Capabilities..………………………….. 28

4

• • •

Chapter 1
Introduction
• • •

Purpose

Welcome to Getting Started with IVI Drivers: Your Guide to Using IVI.NET

Drivers with Visual C# and Visual Basic .NET. This guide introduces key

concepts about IVI drivers and shows you how to create a short Visual Studio

project using an IVI.NET Driver. The guide is part of the IVI Foundation’s series

of guides, Getting Started with IVI Drivers.

Getting Started with IVI Drivers is intended for individuals who write and run

programs to control test-and-measurement instruments. Each guide focuses

on a different programming environment. As you develop test programs, you

face decisions about how you communicate with the instruments. Some of

your choices include Direct I/O, VXIplug&play drivers, or IVI drivers. If you are

new to using IVI drivers or just want a quick refresher on the basics, Getting

Started with IVI Drivers can help.

Getting Started with IVI Drivers shows that IVI drivers can be straightforward

and easy-to-use tools. IVI drivers provide a number of advantages that can save

time and money during development, while improving performance as well.

Whether you are starting a new program or making improvements to an existing

one, you should consider the use of IVI drivers to develop your test programs.

So consider this the “hello instrument” guide for IVI drivers. If you recall, the

“hello world” program, which originally appeared in Programming in C: A

Tutorial, simply prints out “hello world.” The “hello instrument” program

performs a simple measurement on a simulated instrument and returns the

result. We think you’ll find that far more useful.

Why Use an Instrument Driver?
To understand the benefits of IVI drivers, we need to start by defining instrument

drivers in general and describing why they are useful. An instrument driver is a

set of software routines that controls a programmable instrument. Each routine

corresponds to a programmatic operation, such as configuring, writing to,

reading from, and triggering the instrument. Instrument drivers simplify

instrument control and reduce test program development time by eliminating the

need to learn the programming protocol for each instrument.

Starting in the 1970s, programmers used device-dependent commands for

computer control of instruments. But lack of standardization meant even two digital

multimeters from the same manufacturer might not use the same commands. In

the early 1990s a group of instrument manufacturers developed Standard

5

Commands for Programmable Instrumentation (SCPI). This defined set of

commands for controlling instruments uses ASCII characters, providing some

basic standardization and consistency to the commands used to control

instruments. For example, when you want to measure a DC voltage, the

standard SCPI command is “MEASURE:VOLTAGE:DC?”.

In 1993, the VXIplug&play Systems Alliance created specifications for instrument

drivers called VXIplug&play drivers. Unlike SCPI, VXIplug&play drivers do not

specify how to control specific instruments; instead, they specify some common

aspects of an instrument driver.

If you have been programming instruments without a driver, then you are probably

all too familiar with hunting around the programming guide to find the right SCPI

command and exact syntax. You also have to deal with an I/O library to format

and send the strings, and then build the response string into a variable.

By using a driver, you can access the instrument by calling a function in your

programming language instead of having to format and send an ASCII string as

you do with SCPI. With ASCII, you have to create and send the device the syntax

“MEASURE:VOLTAGE:DC?”, then read back a string and build it into a variable.

As programming technology has advanced and with such environments as

.NET and Microsoft® Visual Studio® IntelliSense within the development

environment provides a hierarchy to all functionality of the driver from an initial

object reference. This makes programming easier since you can navigate

logically and are presented with specific choices that are valid in configuring the

device. You will be syntactically correct with your configuration of the device

since the compiler will inform you of any errors in using the driver.

Why IVI?

The VXIplug&play drivers do not provide a common programming interface.

That means programming a Keithley DMM using VXIplug&play still differs

from programming a Keysight DMM. For example, the instrument driver

interface for one may be ke2000_read while another may be kt34401_get or

something even more diverse. Without consistency across instruments

manufactured by different vendors, many programmers still spent a lot of time

learning each individual driver.

In 1998 a group of end users, instrument vendors, software vendors, system

suppliers, and system integrators joined together to form a consortium called

the Interchangeable Virtual Instruments (IVI) Foundation. All agreed on the

need to promote specifications for programming test instruments that provide

consistency, better performance, reduce the cost of program development and

maintenance, and simplify interchangeability.

The IVI Driver specifications were created to achieve this goal and to extend

VXIplug&play by providing COM and .NET versions of drivers.

6

The IVI specifications enable drivers with a consistent and high standard of

quality, usability, and completeness. The specifications define an open driver

architecture, a set of instrument classes, and shared software components.

Together these provide consistency and ease of use, as well as the crucial

elements needed for the advanced features. IVI drivers support: instrument

simulation, automatic range checking, state caching, and interchangeability.

The IVI Foundation has created IVI class specifications that define the

capabilities for drivers for the following thirteen instrument classes:

Class IVI Driver

Digital multimeter (DMM) IviDmm

Oscilloscope IviScope

Arbitrary waveform/function generator IviFgen

DC power supply IviDCPwr

AC power supply IviACPwr

Switch IviSwtch

Power meter IviPwrMeter

Spectrum analyzer IviSpecAn

RF signal generator IviRFSigGen

Upconverter IviUpconverter

Downconverter IviDownconverter

Digitizer IviDigitizer

Counter/timer IviCounter

IVI Class Compliant drivers usually also include numerous functions that are

beyond the scope of the class definition. This may be because the capability is

not common to all instruments of the class or because the instrument offers

some control that is more refined than what the class defines.

7

IVI also defines custom drivers. Custom drivers are used for instruments that are

not members of a class. For example, there is not a class definition for network

analyzers, so a network analyzer driver must be a custom driver. Custom drivers

provide the same consistency and benefits described below for an IVI driver,

except interchangeability.

IVI drivers that conform to the IVI specifications are permitted to display the IVI-

Conformant logo.

Why Use an IVI Driver?

Why choose IVI drivers over other possibilities? Because IVI drivers can increase

performance and flexibility for more intricate test applications. Here are a few of the

benefits:

Consistency – IVI drivers all follow a common model of how to control the

instrument. That saves you time when you need to use a new instrument.

Ease of use – IVI drivers feature enhanced ease of use in popular Application

Development Environments (ADEs). The APIs provide fast, intuitive access to

functions. IVI drivers use technology that naturally integrates in many different

software environments.

Quality – IVI drivers focus on common commands, desirable options, and

rigorous testing to ensure driver quality.

Simulation – IVI drivers allow code development and testing even when an

instrument is unavailable. That reduces the need for scarce hardware resources

and simplifies test of measurement applications. The example programs in this

document use this feature.

Range checking – IVI drivers ensure the parameters you use are within

appropriate ranges for an instrument.

State caching – IVI drivers keep track of an instrument’s status so that I/O is only

performed when necessary, preventing redundant configuration commands from

being sent. This can significantly improve test system performance.

Interchangeability – IVI class compliant drivers also enable exchange of

instruments with minimal code changes, reducing the time and effort needed to

integrate measurement devices into new or existing systems. The IVI class

specifications provide syntactic interchangeability but may not provide behavioral

interchangeability. In other words, the program may run on two different

instruments but the results may not be the same due to differences in the

way the instrument itself functions.

8

Flavors of IVI Drivers

To support all popular programming languages and development environments, IVI

drivers provide either an IVI-C, IVI-COM (Component Object Model), or IVI.NET

API. Driver developers may provide multiples of these interfaces, as well as

wrapper interfaces optimized for specific development environments.

Although the functionality is the same, IVI-C drivers are optimized for use in ANSI

C development environments; IVI-COM drivers are optimized for environments

that support the Component Object Model (COM) such as the .NET

programming environment. IVI.NET drivers present more flexibility with API

data types, access to examining/modifying driver source, and clean handling

of Events.

IVI-C drivers extend the VXIplug&play driver specification and their usage is

similar. IVI-COM and IVI.NET drivers provide easy access to instrument

functionality through methods and properties. Only one version of an IVI-COM

or IVI-C driver can be installed at a time, whereas IVI.NET allows multiple

versions of a driver to be installed.

The getting started examples communicate with the instruments using the

Virtual Instrument Software Architecture (VISA) I/O library, a widely used

standard library for communicating with instruments from a personal computer.

The VISA standard is also provided by the IVI Foundation.

VISA I/O Library

IVI drivers typically require an I/O library to communicate with the instrument.

IVI drivers that communicate with GPIB or VXI instruments are required to use

the VISA (Virtual Instrument Software Architecture) I/O Library. This

guarantees that drivers for GPIB or VXI instruments will work with any

interface hardware that supports VISA. If the instrument uses some other

interface, such as LAN, USB, or PCI, the driver may use other libraries. In

many cases, the necessary I/O support is provided with the operation system.

This getting started example communicates with the instrument using the

VISA I/O library. The VISA standard is provided by the IVI Foundation.

Multiple vendors provide VISA I/O libraries – Anritsu, Bustec, Keysight,

Kikusui, National Instruments, Rohde & Schwarz, and Tektronix. Many non-

modular instruments (box type instruments) will work with different vendors’

VISA. A particular vendor’s IVI.NET driver installation will recommend either

their own or another vendor’s VISA I/O Library be installed.

Some PXI/PXIe modular instruments use a specific I/O library and do not

require the VISA I/O library.

9

Shared Components

To make it easier to combine drivers and other software from various vendors,

the IVI Foundation members have cooperated to provide common software

components, called IVI Shared Components. These components provide

services to drivers and driver clients that need to be common to all drivers. For

instance, the IVI Configuration Server enables administration of system-wide

configuration. It should be noted that different vendors may handle this

differently such that these components may be installed with the IVI.NET

driver installer, with the I/O package, or may need to be downloaded and

installed separately. The ReadMe file for each vendor’s IVI.NET driver should

be specific on what you must do.

Important! You must install the IVI Shared Components before an IVI driver can

be installed. This is often controlled by the vendor’s install program and some

will not permit proceeding with the install without the proper sequence.

The IVI Shared Components can be downloaded from vendors’ web sites as well

as from the IVI Foundation Web site. In some cases, the installation of the VISA

I/O Libraries automatically installs the IVI, IVI.NET, and VISA.NET Shared

components.

To download and install shared components from the IVI Foundation Web site:

1 Go to the IVI Foundation Web site at http://www.ivifoundation.org.

2 Locate the Shared Components tab

3 Choose the IVI and IVI.NET Shared Components install files.

4 The VISA and VISA.NET Shared components should come installed

with the Vendor’s recommended VISA I/O Library for the driver.

NOTE: installing drivers with different APIs, for modular vs. box-type
instruments, or from different vendors may require paying more attention to
installation dialog messages and ReadMe files to assure all necessary
shared components are loaded and in the correct sequence.

Download and Install IVI Drivers

After you have installed the VISA I/O and Shared Components, you are

ready to download and install an IVI driver. For most ADEs, the steps to

download and install an IVI driver are identical. For the few that require a

different process, the relevant Getting Started with IVI Drivers guide provides

the information you need. IVI Drivers are available from the hardware or software

vendors’ web site or by linking to them from the IVI Foundation web site.

The IVI Foundation requires that compliant drivers be registered before they

display the IVI conformant logo. To see the list of drivers registered with the IVI

Foundation, go to the Driver Registry section of the IVI web site at

http://www.ivifoundation.org/registered_drivers/driver_registry.aspx

http://www.ivifoundation.org/
http://www.ivifoundation.org/registered_drivers/driver_registry.aspx

10

Once on the IVI Foundation Website’s Driver Registry, you can use the

Narrow Results by column and filter on IVI.NET Driver Type. This will

reveal all of the registered IVI.NET drivers. The Supported Models column

provides links to the various IVI.NET drivers, which usually reside at the

particular vendor’s Website. The Generation column specifies which version

of the IVI standard the IVI.NET driver is conformant. IVI-2014 is the latest

version of the standard, and all newly released instrument drivers must

conform to that standard.

Follow the embedded hyperlink to the vendor’s Website, and once there, you

will find additional information (usually a ReadMe File or Application Note)

specifying how to download, install, and use the particular IVI.NET driver,

along with the recommended VISA and IVI Components.

Familiarizing Yourself with the Driver

Getting Started with IVI Drivers guides provide a driver example that shows

the important aspects of using an IVI driver. For this guide, the example is

oriented towards using an IVI.NET driver.

You will want to familiarize yourself quickly with drivers you haven’t used

before. Most ADEs, such as Microsoft Visual Studio, provide a way to explore

IVI drivers to learn their functionality using an Object Browser.

In addition, browsing an IVI driver’s help file often proves an excellent way to

learn its functionality. The help and example files are part of the instrument

driver installation and are installed under the IVI Foundation directories:

For IVI-C and IVI-COM:

Program Files / IVI Foundation / IVI / Drivers /…

Program Files (x86) / IVI Foundation / IVI / Drivers /…

…then look under the various Vendor directories for Examples and Help files

For IVI.NET:

Program Files / IVI Foundation / IVI / Microsoft.NET / Framework64 /…

Program Files (x86) / IVI Foundation / IVI / Microsoft.NET / Framework32 /…

…the version of the .NET Framework (2.x, 3.0, 3.5, etc.) is presented as

directories for the particular environment the IVI.NET driver was targeted.

Look for Vendor Examples and Help files under these directories.

Help files are typically in the form of CHM or Compiled HTML Help, but they

may be other formats.

11

Examples

Each vendor supplying an IVI.NET driver is required to provide example code
and documentation that describes how to install all of the necessary
components, including the IVI.NET driver, as stated in the previous section.
For IVI.NET drivers, C# and Visual Basic .NET are the obvious choices. The
examples are usually similar to the example in this guide but will often show
much more detail in configuring the instrument for its typical operation, so you
can quickly get your test system code running.

Each guide in the Getting Started with IVI Drivers series shows you how to

use an IVI driver to write and run a program that performs a simple

measurement on a simulated instrument and returns the result. The examples

demonstrate common steps using IVI drivers. Where practical, every example

includes the steps listed below:

• Download and install the VISA, Shared Components and IVI driver

• Determine the VISA address string. Use an I/O application such as

National Instruments Measurement and Automation Explorer

(NI-MAX) or Keysight Connection Expert.

• Reference the IVI driver and any IVI Shared Components.

• Create an instance of the driver object

• Write the program to setup and control instrument.

o Configure the instrument

o Access an instrument’s properties.

o Set timeout for instrument interactions

o Make a measurement

o Display the measurement result

o Check the instrument for any errors

o Close the I/O session to the instrument

Note - it is good programming practice to call Close() to close the I/O session

to the instrument. For .NET, the object is disposed when the main driver

object is destroyed, whether or not the Close() is called or not.

• • •

Chapter 2
Using IVI.NET with Visual C# and
Visual Basic .NET
• • •

The Environment

C# and Visual Basic.NET are object-oriented programming languages

developed by Microsoft. They enable programmers to quickly build a wide

range of applications for the Microsoft .NET platform. This chapter provides

detailed instructions in C# as well as illustrating the equivalent code for Visual

Basic.NET.

Since many test systems are a hybrid of modular and box-type products and

from different vendors, this example mixes resources from different vendors to

show that compatibility: National Instruments VISA for instrument connectivity,

IVI Foundation Shared components, and an IVI.NET driver from Keysight.

Example Requirements
• Windows 7/8/10 64-bit operating system

• Microsoft Visual Studio 2012 and later

• Visual C#

• National Instruments – NI-VISA 16.0

• IVI Foundation - IviSharedComponents64_241.exe

• IVI Foundation - IviNetSharedComponents64_Fx20_1.2.0.exe

• Keysight IntegraVision IVI.NET Driver – a custom driver that has
some similarities to a Scope. IntegaVision IVI.NET driver link takes
you to the download page from which you will select the IVI.NET
64-bit version of the driver.

Download and Install the Driver
If you have not already installed the VISA, Shared Components and IVI.NET

driver, refer to Chapter 1 for more specifics. The installer for the Keysight

IntegraVision driver will prompt you if any of the required shared components

are not already installed on your system, and there is also a ReadMe file you

can follow to understand the installation of all necessary components and any

order dependency.

12

http://www.ni.com/download/ni-visa-16.0/6184/en/
http://www.ivifoundation.org/shared_components/Default.aspx
http://www.ivifoundation.org/shared_components/Default.aspx
http://www.ivifoundation.org/shared_components/Default.aspx
http://www.keysight.com/main/software.jspx?cc=US&lc=eng&ckey=2699092&nid=-32752.1116252.02&id=2699092

Create a New Project and Reference the Driver
Begin by creating a new project and add any necessary references to the IVI
Driver and Shared Components.

1 Launch Visual Studio and create a new Console Application in Visual C# by

selecting File -> New -> Project and selecting a Visual C# Console

Application.

Note: When you select new, Visual Studio will create an empty program
that includes some necessary code, including using statements. Keep this
required code as the basis of the example.

For the next steps you will need to ensure that the "Program.cs" editor window
is visible and the Solution Explorer is visible.

2 Right-click References in the Solution Explorer and then select Add
Reference. When the Add Reference dialog appears, select Extensions
under Assemblies.

3 The following image shows which items to select: Shared Components
Ivi.Driver, Ivi.Scope, and Ivi.Visa. Select Keysight.KtIntegraVision.

Note: If you have not installed the IVI driver, it will not appear in this list. You
must close the Add Reference dialog, install the driver, and select Add
Reference again for the driver to appear.

Also Note: Two entries appear for most assemblies – representing both 32-

bit and 64-bit versions. Hover over the assembly to determine its type and
where it is actually located. Select the 64-bit versions.

13

Note: Adding the reference changes nothing in the default program created by

Visual Studio, but the driver references are now available for use. To see the

reference, select View and click Solution Explorer. Solution Explorer appears and

lists the reference.

Create an Instance of the Driver
Before creating the instance of the driver, the default program should be

modified for easy access of the previously referenced driver. To allow your

program to access the driver without specifying the full namespace for every

program entry, type the following line immediately below the other default

using statements. See figure below:

Note: As soon as you type the Keysight, IntelliSense lists the valid inputs.

When finished adding the Keysight reference, add “using Ivi.Driver;”

This gives access to Shared Components such as common Driver

Exceptions, which is the basis for trapping error conditions in the .NET

environment.

Congratulations! Your program will now compile and you can write the rest

of the program to control the simulated instrument.

14

Use the Object Browser for Help

Now that you have created the initial project, you may need help finding the

correct properties and functions to call when programming the instrument.

Microsoft’s Object Browser provides a visual and hierarchical representation of

the IVI driver functionality. If the Object Browser is not already visible, find the

VIEW tab at the top of Visual Studio and select Object Browser.

15

Now continue to add to the C# program as this example progresses.

The following program snippet shows creation of the IVI.NET driver object.

Since any failure here should be caught immediately, this operation has its own

try-catch structure, and there will be a new try-catch-finally structure for the rest

of the program example.

Optionally using .NET Named Parameters makes the code self-documenting,

which this example uses extensively to make it easier to read. Note that

options uses Simulate=true, so you don’t actually have to have the

instrument present to write the program. With simulation, the resourceName

can be anything, since it will not actually be used if you run the program.

Note: IntelliSense helps ensure you use the correct syntax and values. You will
experience this every time you begin to type in something that is a part of the
using statements at the top of the program.

16

Configure the Instrument
All instruments have some sort of configuration for a particular measurement or
output setup. A DMM might have fewer steps to get towards making a
measurement than a scope-type instrument, but with an IVI driver, all setup is
relatively small. The example below shows the configuration of an instrument
that has multiple channels. In this case, the IVI Driver Repeated Capabilities
feature allows the same setup to be used for each channel, but you provide a
name for each channel (“Channel1”). Note that this particular driver mixes both
the “Channel1” designator and also uses an integer value, which is not a
recommended driver implementation practice. However, you may see it in other
drivers, both IVI.NET and IVI-COM.drivers. Each of the steps below are
illustrated in the program snippet image that follows.

 Use PrecisionTimeSpan to set timeout operations with instrument. This
shared component helps you to always pick the correct time units.

 Enable all measurement functions for Channel1

 Set the coupling to DC using a property setting and enumerated type

 Auto-setup the channel.

 Configure the Trigger Subsystem for a measurement. Note that
TriggerSlope is also a part of the IVI Shared Components.

 Select the desired measurements as a list to be returned when querying the
results.

17

Display the Results
For this instrument, the AutoSetup() and Trigger.Configure creates the
environment for actually measuring the applied signal, very much like having
the instrument in a free-running bench operation. All that is needed is to
acquire the measurement result from the instrument using the following:

Check for Errors

When using the .NET programming environment, Exceptions are the preferred
method to trap error conditions. The IVI .NET Shared Components provide
common error exceptions that cover a wide range of errors and warnings. The
following is an example of using two exceptions.

With message-based instruments, the IVI .NET Shared Components provide a
single call to query both the error number and error string using
ErrorQueryResult. This may be necessary when revisiting an instrument where
some condition has occurred since you last programmed it. Otherwise, any
programming error condition will be caught with an Exception.

For example, losing a 10MHz Reference signal causes an instrument Warning
or Error. This might generate quite a few queued error conditions in the
instrument’s error queue. All queued errors can be read from the instrument
when looping using the following code:

The Exception may be a single Event, and you can then use the above
example to read any remaining errors in the queue.

18

18

Close the Session
It is good programming practice to call Close() even if .NET will eventually
dispose of the driver object. Performing the close operation controls when the
object is closed. The following is added to the try-catch discussed in Checking
for Errors and creates an overall a try-catch-finally, where the finally is always
the last thing called. This is where we put the closing of the IVI Driver.

Complete program

19

Build and Run the Application
Build your application and run it to verify it works properly.

1 From the Build menu, click the name of your Console Application.

2 From the Debug menu, click Start Debugging.

20

Visual Basic.NET Code
Virtually all of the steps above are the same when using Visual Basic.NET. To
add the Reference for IVI Driver and IVI Shared Components, right-click the
IviNetExampleVB project as illustrated in the figure below, Add Reference,
choose Extensions, and select the same references as detailed under the C#
example: Ivi.Driver, Ivi.Scope, Ivi.Visa, and Keysight.KtIntegraVision, the 64-bit
versions.

21

Here is the equivalent code example:

22

Further Information
• Learn more about Visual C# at http://msdn.microsoft.com/vcsharp/.

• Learn more about Visual Basic at http://msdn.microsoft.com/vbasic/.

• IVI Foundation forums at http://forums.ivifoundation.org/

• IVI Foundation resources at http://ivifoundation.org/resources/default.aspx

Microsoft® and Visual Studio® are registered trademarks of Microsoft Corporation

in the United States and/or other countries.

23

http://msdn.microsoft.com/vcsharp/
http://msdn.microsoft.com/vbasic/
http://forums.ivifoundation.org/
http://ivifoundation.org/resources/default.aspx

• • •

Chapter 3
IVI.NET vs. IVI-COM
• • •

Overview

Consistency in the development of IVI drivers has been a high priority for the IVI
Foundation, and any differences between test system development tools and
environments have reasons for best performance and usability. This section provides
insight into differences between IVI.NET and IVI-COM drivers.

 Here is a little history and purpose for the two driver types:

IVI-COM COM (Common Object Model) is a language independent object oriented interface

standard for components introduced by Microsoft in 1993. COM is supported by
many different environments. IVI-COM drivers provide a COM type library and a
.NET interop assembly or wrapper. IVI-COM drivers are easily accessed from
.NET environments and can also be accessed from other environments such as
National Instruments LabVIEW and Microsoft VBA.

IVI.NET IVI.NET drivers provide a native .NET interface to the instrumentation and provide
the best end-user experience for those working in a .NET environment and using
languages such as C# and VB.NET

Although the IVI-COM interface is very good in .NET, the IVI.NET drivers add
native .NET characteristics allowing application programs to more easily deal with
things like collections, enumerated types, and complex data types found in using
waveforms.

The IVI Foundation made a deliberate decision to design the required IVI.NET API
to best match what IVI.NET users expect, and this inevitably means taking
advantage of .NET-only features, which cannot be represented in COM.

24

IVI Driver Source Code

Many IVI drivers provide the option to include source code for the driver during

installation. However, IVI-COM drivers are quite complicated internally. IVI.NET

driver source is easier to understand and modify by a programmer and could

provide a means to enhance or fix the driver. Source code is located in the same

locations as the Driver, Help and Example directories:

For IVI-COM:

Program Files / IVI Foundation / IVI / Drivers /…

Program Files (x86) / IVI Foundation / IVI / Drivers /…

For IVI.NET:

Program Files / IVI Foundation / IVI / Microsoft.NET / Framework64 /…

Program Files (x86) / IVI Foundation / IVI / Microsoft.NET / Framework32 /…

A generic Visual Studio project file is typically provided to build in the 32-bit or 64-bit

environments.

Side-by-side Deployment of IVI Drivers

Only a single IVI-COM driver can be installed at a time for a particular instrument;

whereas, IVI.NET allows multiple versions of a driver to be installed.

For IVI-COM, you add a single reference once in the .NET environment, since

newer versions replace older versions with the same DLL reference and location.

For IVI.NET, there is a different version number for each release of the driver and

different programs can continue to run previous versions of the driver.

25

IVI.NET’s Richer Type System

IVI-COM has a limited set of data types – Integers, Floats, Booleans, and Strings.

Here is an example showing an IVI.NET special added type:

Channels[].Measurement.FetchWaveform)IWaveform<Double> waveform);

Other data types added with IVI.NET besides IWaveform include

PrecisionDataTime and PrecisionTimeSpan (see below). With these later

types, there is no longer confusion about time units, such as milliseconds vs.

seconds, or UTC time, etc.

IVI-COM drivers provide a means to return variables, arrays, and strings or they

can be passed references to variables, arrays, and strings.

IVI.NET can return objects and structures.

PrecisionTimeSpan

IVI-COM drivers represent time in seconds; whereas, IVI.NET drivers present units

of time implicit in the definition of PrecisionTimeSpan and PrecisionDateTime,

providing days, hours, microseconds, nanoseconds, etc. These IVI shared

components provide more resolution than the corresponding .NET DateTime and

TimeSpan classes.

Initializing the Driver

IVI.COM creates the driver object and then initializes the driver.

 IAgMSwitch driver = new IAgMSwitch();

 driver.Initialize(visaAdd, true, true, "");

IVI.NET performs the initialization when creating the driver object:

 KtIntegraVision driver = new KtIntegraVision(visaAdd, true, true, “”);

26

Error Handling

IVI-COM Error handling depends upon the programming environment. When programming

from .NET, every error generated in the instrument driver is transmitted to the test
program as a .NET COMException. These driver errors can be trapped with try-
catch-finally capability in .NET. For message based devices, the following can be

used to query error conditions directly from the instrument.

string ErrorMessage = null;
int ErrorCode = 0;

driver.Utility.ErrorQuery(ref ErrorCode, ref ErrorMessage);

IVI.NET Most errors are returned as exceptions and should be trapped using the try-catch-

finally capabilities in .NET. The example program in Chapter 2 illustrates a couple

of error conditions that might occur from various interactions with the driver.

There may be cases where an error or warning may occur in an instrument since
the last time you tried to program it. This might occur if an instrument loses its high
precision frequency locking signal, for example. If desired, you can use this
secondary mechanism to query the instrument directly with the following. Note the
new type established for the Error results as compared to IVI-COM drivers.

ErrorQueryResult result;
result = driver.Utility.ErrorQuery();
Console.WriteLine(“{0} : {1}”, results.Code, result.Message);

Events from the Driver

IVI-COM drivers almost never expose events, and exposing something commonly

needed as an SRQ event from an instrument is difficult and requires special

knowledge and programming. In general, IVI-COM exceptions are primarily

oriented around I/O errors with the instrument.

IVI.NET provides a standard mechanism for exposing events and requires no

special programming. To use events, the programmer simply subscribes to or

unsubscribes from the event.

27

Syntax for Enumerations and Repeated Capabilities

IVI.NET provides a simpler syntax for referring to enumerated values and also

repeated capabilities.

In the example below, the detection level on Channel 3 is being set to the High

level. Both the reference to the repeated capability (“Channel3”) and the

enumeration (“ArmSourceDetection.High”) are somewhat simpler in .NET.

IVI-COM

 digitizer.Arm.Source.get_Item("Channel3").Detection =

 IviLxiSyncArmSourceDetectionEnum.IviLxiSyncArmSourceDetectionHigh;

IVI.NET

 digitizer.Arm.Source["Channel3"].Detection =

 ArmSourceDetection.High;

28

