

Interchangeable

Instruments
VirtualIVI

IVI-4.15: IviDigitizer Class Specification

June 7, 2019
Revision 2.3

IVI-4.15: IviDigitizer Class Specification 2 IVI Foundation

Important Information

The IVI -4.15: IviDigitizer Class Specification is authored by the IVI Foundation member companies. For a

vendor membership roster list, please visit the IVI Foundation web site at www.ivifoundation.org .

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation

through the web site at www.ivifoundation.org .

Warranty

The IVI Foundation and its member companies make no warranty of any kind with r-0Draftegard to this

material, including, but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. The IVI Foundation and its member companies shall not be liable for errors contained herein or

for incidental or consequential damages in connection with the furnishing, performance, or use of this

material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

http://www.ivifoundation.org/
http://www.ivifoundation.org/

IVI Foundation 3 IVI-4.15: IviDigitizer Class Specification

IviDigitizer Class Specification .. 12

1. Overview of the IviDigitizer Specification ... 14
1.1 Introduction...14
1.2 IviDigitizer Class Overview ...14
1.3 References...14
1.4 Definitions of Terms and Acronyms ..14

2. IviDigitizer Class Capabilities .. 16
2.1 Introduction...16
2.2 IviDigitizer Group Names ..16
2.3 Repeated Capability Names ..18

2.3.1 Channel ..18
2.3.2 ArmSource...18
2.3.3 TriggerSource ..18

2.4 Boolean Attribute and Parameter Values ...18
2.5 .NET Namespace ..18
2.6 .NET IviDigitizer Session Factory ...18

3. General Requirements ... 21
3.1 Minimum Class Compliance ..21

3.1.1 Disable ...21
3.2 Capability Group Compliance ..21

4. IviDigitizerBase Capability Group ... 22
4.1 Overview...22

4.1.1 Channel Sub-System ...22
4.1.2 Acquisition Sub-System ..24
4.1.3 IviDigitizer Arm and Trigger States ..25
4.1.4 Trigger Sub-System ...26
4.1.5 Reading Data ...30
4.1.6 Combining Channels ...36

4.2 IviDigitizerBase Attributes ...38
4.2.1 Active Trigger Source ...39
4.2.2 Channel Count ...40
4.2.3 Channel Enabled..41
4.2.4 Channel Item (IVI-COM & IVI.NET Only) ...42
4.2.5 Channel Name (IVI-COM & IVI.NET Only) ...43
4.2.6 Input Connector Selection ...44
4.2.7 Input Impedance ..45

IVI-4.15: IviDigitizer Class Specification 4 IVI Foundation

4.2.8 Is Idle ...46
4.2.9 Is Measuring ..48
4.2.10 Is Waiting For Arm ...50
4.2.11 Is Waiting For Trigger ...52
4.2.12 Max First Valid Point Value ...54
4.2.13 Max Samples Per Channel ..55
4.2.14 Min Record Size ..56
4.2.15 Num Acquired Records ...57
4.2.16 Num Records To Acquire..58
4.2.17 Record Size..59
4.2.18 Sample Rate ...60
4.2.19 Trigger Coupling ...61
4.2.20 Trigger Delay ..63
4.2.21 Trigger Hysteresis ...64
4.2.22 Trigger Level ...65
4.2.23 Trigger Output Enabled ...66
4.2.24 Trigger Slope ...67
4.2.25 Trigger Source Count ..68
4.2.26 Trigger Source Item (IVI-COM & IVI.NET only) ...69
4.2.27 Trigger Source Name (IVI-COM & IVI.NET only) ...70
4.2.28 Trigger Type ..71
4.2.29 Vertical Coupling ..73
4.2.30 Vertical Offset ...75
4.2.31 Vertical Range ...76

4.3 IviDigitizerBase Functions ...77
4.3.1 Abort ..78
4.3.2 Configure Acquisition Record...79
4.3.3 Configure Active Trigger Source (IVI-C Only) ..80
4.3.4 Configure Channel ..81
4.3.5 Configure Edge Trigger Source ..83
4.3.6 Create Waveform (IVI.NET Only) ...85
4.3.7 Fetch Waveform Int16...86
4.3.8 Fetch Waveform Int32...90
4.3.9 Fetch Waveform Int8...93
4.3.10 Fetch Waveform Real64 ..96
4.3.11 Get Channel Name (IVI-C Only) ..99
4.3.12 Get Trigger Source Name (IVI-C Only) ...100
4.3.13 Initiate Acquisition ..101
4.3.14 Is Idle (IVI-C Only) ...102
4.3.15 Is Measuring (IVI-C Only) ..103
4.3.16 Is Waiting For Arm (IVI-C Only) ...104
4.3.17 Is Waiting For Trigger (IVI-C Only) ..105
4.3.18 Query Min Waveform Memory (IVI-C and IVI-COM Only) ..106
4.3.19 Read Waveform Int16 ...108
4.3.20 Read Waveform Int32 ...113
4.3.21 Read Waveform Int8 ...117
4.3.22 Read Waveform Real64 ..121
4.3.23 Wait For Acquisition Complete ..125

4.4 IviDigitizerBase Behavior Model ...127

5. IviDigitizerMultiRecordAcquisition Extension Group..................... 129
5.1 IviDigitizerMultiRecordAcquisition Overview ..129
5.2 IviDigitizerMultiRecordAcquisition Waveform Collection (IVI.NET Only) ..129

5.2.1 Item ..130
5.2.2 Valid Waveform Count ...131

IVI Foundation 5 IVI-4.15: IviDigitizer Class Specification

5.3 IviDigitizerMultiRecordAcquisition Functions ..132
5.3.1 Create Waveform Collection (IVI.NET Only) ..133
5.3.2 Fetch Multi-Record Waveform Int16 ..134
5.3.3 Fetch Multi-Record Waveform Int32 ..140
5.3.4 Fetch Multi-Record Waveform Int8 ..144
5.3.5 Fetch Multi-Record Waveform Real64 ...148

5.4 IviDigitizerMultiRecordAcquisition Behavior Model ...151
5.5 IviDigitizerMultiRecordAcquisition Compliance Notes ..151

6. IviDigitizerBoardTemperature Extension Group 152
6.1 IviDigitizerBoardTemperature Overview ...152
6.2 IviDigitizerBoardTemperature Attributes ..152

6.2.1 Board Temperature ..153
6.2.2 Temperature Units ...154

6.3 IviDigitizerBoardTemperature Functions ...156
6.3.1 Configure Temperature Units (IVI-C Only) ...157
6.3.2 Query Board Temperature (IVI-C Only)...158

6.4 IviDigitizerBoardTemperature Behavior Model ..159
6.5 IviDigitizerBoardTemperature Compliance Notes ...159

7. IviDigitizerChannelFilter Extension Group 160
7.1 IviDigitizerChannelFilter Overview ...160
7.2 IviDigitizerChannelFilter Attributes ...160

7.2.1 Input Filter Bypass ..161
7.2.2 Input Filter Max Frequency ...162
7.2.3 Input Filter Min Frequency ...163

7.3 IviDigitizerChannelFilter Functions ...164
7.3.1 Configure Input Filter ..165

7.4 IviDigitizerChannelFilter Behavior Model...166
7.5 IviDigitizerChannelFilter Compliance Notes ...166

8. IviDigitizerChannelTemperature Extension Group 167
8.1 IviDigitizerChannelTemperature Overview ...167
8.2 IviDigitizerChannelTemperature Attributes ...167

8.2.1 Channel Temperature ..168
8.3 IviDigitizerChannelTemperature Functions ...169

8.3.1 Query Channel Temperature (IVI-C Only) ...170
8.4 IviDigitizerChannelTemperature Behavior Model ...171
8.5 IviDigitizerChannelTemperature Compliance Notes ...171

9. IviDigitizerTimeInterleavedChannels Extension Group 172
9.1 IviDigitizerTimeInterleavedChannels Overview ..172
9.2 IviDigitizerTimeInterleavedChannels Attributes ...172

9.2.1 Time Interleaved Channel List ..173
9.2.2 Time Interleaved Channel List Auto ...174

9.3 IviDigitizerTimeInterleavedChannels Functions..175
9.3.1 Configure Time Interleaved Channel List (IVI-C Only)...176

9.4 IviDigitizerTimeInterleavedChannels Behavior Model ...177
9.5 IviDigitizerTimeInterleavedChannels Compliance Notes ..177

IVI-4.15: IviDigitizer Class Specification 6 IVI Foundation

10. IviDigitizerDataInterleavedChannels Extension Group 178
10.1 IviDigitizerDataInterleavedChannels Overview ..178
10.2 IviDigitizerDataInterleavedChannels Attributes ..178

10.2.1 Data Interleaved Channel List ...179
10.3 IviDigitizerDataInterleavedChannels Functions ..180

10.3.1 Configure Data Interleaved Channel List (IVI-C Only) ...181
10.4 IviDigitizerDataInterleavedChannels Behavior Model ..182
10.5 IviDigitizerDataInterleavedChannels Compliance Notes ...182

11. IviDigitizerReferenceOscillator Extension Group 183
11.1 IviDigitizerReferenceOscillator Overview ...183
11.2 IviDigitizerReferenceOscillator Attributes ...183

11.2.1 Reference Oscillator External Frequency..184
11.2.2 Reference Oscillator Output Enabled ..185
11.2.3 Reference Oscillator Source ..186

11.3 IviDigitizerReferenceOscillator Functions ...188
11.3.1 Configure Reference Oscillator ...189
11.3.2 Configure Reference Oscillator Output Enabled (IVI-C Only) ..191

11.4 IviDigitizerReferenceOscillator Behavior Model ...192
11.5 IviDigitizerReferenceOscillator Compliance Notes ...192

12. IviDigitizerSampleClock Extension Group 193
12.1 IviDigitizerSampleClock Overview ...193
12.2 IviDigitizerSampleClock Attributes ...193

12.2.1 Sample Clock External Divider ...194
12.2.2 Sample Clock External Frequency ..194
12.2.3 Sample Clock Source ..195
12.2.4 Sample Clock Output Enabled ..196

12.3 IviDigitizerSampleClock Functions ...197
12.3.1 Configure Sample Clock ...198
12.3.2 Configure Sample Clock Output Enabled (IVI-C Only) ...199

12.4 IviDigitizerSampleClock Behavior Model ...200
12.5 IviDigitizerSampleClock Compliance Notes ...200

13. IviDigitizerSampleMode Extension Group 201
13.1 IviDigitizerSampleMode Overview..201
13.2 IviDigitizerSampleMode Attributes ...201

13.2.1 Sample Mode ...202
13.3 IviDigitizerSampleMode Functions..203

13.3.1 Configure Sample Mode (IVI-C Only) ...204
13.4 IviDigitizerSampleMode Behavior Model ...205
13.5 IviDigitizerSampleMode Compliance Notes ..205

14. IviDigitizerSelfCalibration Extension Group 206
14.1 IviDigitizerSelfCalibration Overview ..206
14.2 IviDigitizerSelfCalibration Functions ..206

14.2.1 Self Calibrate ...207
14.3 IviDigitizerSelfCalibration Behavior Model ..208
14.4 IviDigitizerSelfCalibration Compliance Notes...208

IVI Foundation 7 IVI-4.15: IviDigitizer Class Specification

15. IviDigitizerDownconversion Extension Group 209
15.1 IviDigitizerDownconversion Overview..209
15.2 IviDigitizerDownconversion Attributes ...209

15.2.1 Downconversion Enabled..210
15.2.2 Downconversion Center Frequency ..211
15.2.3 Downconversion IQ Interleaved ...212

15.3 IviDigitizerDownconversion Functions..213
15.3.1 Configure Downconversion ..214

16. IviDigitizerArm Extension Group ... 215
16.1 IviDigitizerArm Overview..215
16.2 IviDigitizerArm Attributes ...215

16.2.1 Active Arm Source ..216
16.2.2 Arm Count ...217
16.2.3 Arm Coupling ..218
16.2.4 Arm Delay ...220
16.2.5 Arm Hysteresis ..221
16.2.6 Arm Level..222
16.2.7 Arm Output Enabled ...223
16.2.8 Arm Slope..224
16.2.9 Arm Source Count ...225
16.2.10 Arm Source Item (IVI-COM & IVI.NET only) ..226
16.2.11 Arm Source Name (IVI-COM & IVI.NET only) ..227
16.2.12 Arm Type ..228

16.3 IviDigitizerArm Functions..230
16.3.1 Configure Edge Arm Source ...231
16.3.2 Get Arm Source Name (IVI-C Only) ..232

16.4 IviDigitizerArm Behavior Model ...234
16.5 IviDigitizerArm Compliance Notes ..234

17. IviDigitizerMultiArm Extension Group ... 235
17.1 IviDigitizerMultiArm Overview ...235
17.2 IviDigitizerMultiArm Attributes ..235

17.2.1 Arm Source List ..236
17.2.2 Arm Source Operator ..237

17.3 IviDigitizerMultiArm Functions ...239
17.3.1 Configure Multi Arm...240

17.4 IviDigitizerMultiArm Behavior Model ..242
17.5 IviDigitizerMultiArm Compliance Notes ...242

18. IviDigitizerGlitchArm Extension Group ... 243
18.1 IviDigitizerGlitchArm Overview..243
18.2 IviDigitizerGlitchArm Attributes ...243

18.2.1 Glitch Arm Condition ..244
18.2.2 Glitch Arm Polarity ...245
18.2.3 Glitch Arm Width ..246

18.3 IviDigitizerGlitchArm Functions..247
18.3.1 Configure Glitch Arm Source ...248

18.4 IviDigitizerGlitchArm Behavior Model ...250
18.5 IviDigitizerGlitchArm Compliance Notes ..250

IVI-4.15: IviDigitizer Class Specification 8 IVI Foundation

19. IviDigitizerRuntArm Extension Group ... 251
19.1 IviDigitizerRuntArm Overview ..251
19.2 IviDigitizerRuntArm Attributes..251

19.2.1 Runt Arm High Threshold ...252
19.2.2 Runt Arm Low Threshold ...253
19.2.3 Runt Arm Polarity ...254

19.3 IviDigitizerRuntArm Functions ..256
19.3.1 Configure Runt Arm Source..257

19.4 IviDigitizerRuntArm Behavior Model ...259
19.5 IviDigitizerRuntArm Compliance Notes ..259

20. IviDigitizerSoftwareArm Extension Group 260
20.1 IviDigitizerSoftwareArm Overview ...260
20.2 IviDigitizerSoftwareArm Functions ...260

20.2.1 Send Software Arm ...261
20.3 IviDigitizerSoftwareArm Behavior Model ...262
20.4 IviDigitizerSoftwareArm Compliance Notes ...262

21. IviDigitizerTVArm Extension Group .. 263
21.1 IviDigitizerTVArm Overview ..263
21.2 IviDigitizerTVArm Attributes ..263

21.2.1 TV Arm Event ...264
21.2.2 TV Arm Line Number ...266
21.2.3 TV Arm Polarity ..267
21.2.4 TV Arm Signal Format..268

21.3 IviDigitizerTVArm Functions ..270
21.3.1 ConfigureTV Arm Source ...271

21.4 IviDigitizerTVArm Behavior Model ..274
21.5 IviDigitizerTVArm Compliance Notes ..274

22. IviDigitizerWidthArm Extension Group ... 275
22.1 IviDigitizerWidthArm Overview..275
22.2 IviDigitizerWidthArm Attributes ...275

22.2.1 Width Arm Condition ..276
22.2.2 Width Arm High Threshold ..278
22.2.3 Width Arm Low Threshold ...279
22.2.4 Width Arm Polarity ...280

22.3 IviDigitizerWidthArm Functions..282
22.3.1 Configure Width Arm Source ...283

22.4 IviDigitizerWidthArm Behavior Model ...286
22.5 IviDigitizerWidthArm Compliance Notes ..286

23. IviDigitizerWindowArm Extension Group 287
23.1 IviDigitizerWindowArm Overview ..287
23.2 IviDigitizerWindowArm Attributes..287

23.2.1 Window Arm Condition ..288
23.2.2 Window Arm High Threshold ...290
23.2.3 Window Arm Low Threshold ...291

23.3 IviDigitizerWindowArm Functions ..292
23.3.1 Configure Window Arm Source..293

23.4 IviDigitizerWindowArm Behavior Model ...295

IVI Foundation 9 IVI-4.15: IviDigitizer Class Specification

23.5 IviDigitizerWindowArm Compliance Notes ..295

24. IviDigitizerTriggerModifier Extension Group 296
24.1 IviDigitizerTriggerModifier Overview ...296
24.2 IviDigitizerTriggerModifier Attributes ..296

24.2.1 Trigger Modifier ..297
24.3 IviDigitizerTriggerModifier Functions ...299

24.3.1 Configure Trigger Modifier (IVI-C Only) ..300
24.4 IviDigitizerTriggerModifier Behavior Model ..301
24.5 IviDigitizerTriggerModifier Compliance Notes ...301

25. IviDigitizerMultiTrigger Extension Group 302
25.1 IviDigitizerMultiTrigger Overview ..302
25.2 IviDigitizerMultiTrigger Attributes ..302

25.2.1 Trigger Source List ..303
25.2.2 Trigger Source Operator ..304

25.3 IviDigitizerMultiTrigger Functions ..306
25.3.1 Configure Multi Trigger ..307

25.4 IviDigitizerMultiTrigger Behavior Model ..309
25.5 IviDigitizerMultiTrigger Compliance Notes ..309

26. IviDigitizerPretriggerSamples Extension Group 310
26.1 IviDigitizerPretriggerSamples Overview ...310
26.2 IviDigitizerPretriggerSamples Attributes ...310

26.2.1 Pretrigger Samples ..311
26.3 IviDigitizerPretriggerSamples Functions ...312

26.3.1 Configure Pretrigger Samples (IVI-C Only) ...313
26.4 IviDigitizerPretriggerSamples Behavior Model ...314
26.5 IviDigitizerPretriggerSamples Compliance Notes ...314

27. IviDigitizerTriggerHoldoff Extension Group.................................. 315
27.1 IviDigitizerTriggerHoldoff Overview ..315
27.2 IviDigitizerTriggerHoldoff Attributes ..315

27.2.1 Trigger Holdoff ...316
27.3 IviDigitizerTriggerHoldoff Functions ..317

27.3.1 Configure Trigger Holdoff (IVI-C Only) ..318
27.4 IviDigitizerTriggerHoldoff Behavior Model ..319
27.5 IviDigitizerTriggerHoldoff Compliance Notes ..319

28. IviDigitizerGlitchTrigger Extension Group 320
28.1 IviDigitizerGlitchTrigger Overview ...320
28.2 IviDigitizerGlitchTrigger Attributes ...320

28.2.1 Glitch Trigger Condition ...321
28.2.2 Glitch Trigger Polarity ..322
28.2.3 Glitch Trigger Width ...324

28.3 IviDigitizerGlitchTrigger Functions ...325
28.3.1 Configure Glitch Trigger Source ...326

28.4 IviDigitizerGlitchTrigger Behavior Model...328
28.5 IviDigitizerGlitchTrigger Compliance Notes ...328

IVI-4.15: IviDigitizer Class Specification 10 IVI Foundation

29. IviDigitizerRuntTrigger Extension Group 329
29.1 IviDigitizerRuntTrigger Overview ...329
29.2 IviDigitizerRuntTrigger Attributes ...329

29.2.1 Runt Trigger High Threshold ..330
29.2.2 Runt Trigger Low Threshold ...331
29.2.3 Runt Trigger Polarity...332

29.3 IviDigitizerRuntTrigger Functions ...334
29.3.1 Configure Runt Trigger Source ...335

29.4 IviDigitizerRuntTrigger Behavior Model ...337
29.5 IviDigitizerRuntTrigger Compliance Notes ...337

30. IviDigitizerSoftwareTrigger Extension Group 338
30.1 IviDigitizerSoftwareTrigger Overview ..338
30.2 IviDigitizerSoftwareTrigger Functions ..338

30.2.1 Send Software Trigger...339
30.3 IviDigitizerSoftwareTrigger Behavior Model ..340
30.4 IviDigitizerSoftwareTrigger Compliance Notes...340

31. IviDigitizerTVTrigger Extension Group ... 341
31.1 IviDigitizerTVTrigger Overview..341
31.2 IviDigitizerTVTrigger Attributes ...341

31.2.1 TV Trigger Event ..342
31.2.2 TV Trigger Line Number ..344
31.2.3 TV Trigger Polarity ...345
31.2.4 TV Trigger Signal Format ...346

31.3 IviDigitizerTVTrigger Functions..348
31.3.1 Configure TV Trigger Source ...349

31.4 IviDigitizerTVTrigger Behavior Model ...352
31.5 IviDigitizerTVTrigger Compliance Notes ..352

32. IviDigitizerWidthTrigger Extension Group 353
32.1 IviDigitizerWidthTrigger Overview ...353
32.2 IviDigitizerWidthTrigger Attributes ...354

32.2.1 Width Trigger Condition ...355
32.2.2 Width Trigger High Threshold ..357
32.2.3 Width Trigger Low Threshold ..358
32.2.4 Width Trigger Polarity ..359

32.3 IviDigitizerWidthTrigger Functions ...361
32.3.1 Configure Width Trigger Source ...362

32.4 IviDigitizerWidthTrigger Behavior Model...365
32.5 IviDigitizerWidthTrigger Compliance Notes ...365

33. IviDigitizerWindowTrigger Extension Group 366
33.1 IviDigitizerWindowTrigger Overview ...366
33.2 IviDigitizerWindowTrigger Attributes ...367

33.2.1 Window Trigger Condition ...368
33.2.2 Window Trigger High Threshold ..370
33.2.3 Window Trigger Low Threshold ...371

33.3 IviDigitizerWindowTrigger Functions ...372
33.3.1 Configure Window Trigger Source ...373

33.4 IviDigitizerWindowTrigger Behavior Model ...375

IVI Foundation 11 IVI-4.15: IviDigitizer Class Specification

33.5 IviDigitizerWindowTrigger Compliance Notes ...375

34. IviDigitizer Attribute ID Definitions .. 376

35. IviDigitizer Attribute Value Definitions .. 380

36. IviDigitizer Function Parameter Value Definitions 397

37. IviDigitizer Error and Completion Code Value Definitions 411
37.1 IVI.NET IviDigitizer Exceptions and Warnings ..412

37.1.1 ArmNotSoftwareException ...413
37.1.2 ChannelNotEnabledException ..414
37.1.3 IncompatibleFetchException ...415

38. IviDigitizer Hierarchies ... 416
38.1 IviDigitizer .NET Hierarchy ...416

38.1.1 IviDigitizer .NET Interfaces ..421
38.1.2 .NET Interface Reference Properties...423

38.2 IviDigitizer COM Hierarchy...424
38.2.1 IviDigitizer COM Interfaces ...429
38.2.1 COM Interface Reference Properties ..431
38.2.2 IviDigitizer COM Category...433

38.3 IviDigitizer C Function Hierarchy ..433
38.4 IviDigitizer C Attribute Hierarchy..436

Appendix A Specific Driver Development Guidelines 440
A.1 Introduction ..440
A.2 Disabling Unused Extension Groups ...440
A.3 Special Consideration for Query Instrument Status ...444
A.4 Implementing the Trigger Holdoff attribute ...444

Appendix B Interchangeability Checking Rules 445
B.1 Introduction ..445
B.2 When to Perform Interchangeability Checking ..445
B.3 Interchangeability Checking Rules ..445

IVI-4.15: IviDigitizer Class Specification 12 IVI Foundation

IviDigitizer Class Specification

IviDigitizer Revision History

This section is an overview of the revision history of the IviDigitizer specification.

Table 1. IviDigitizer Class Specification Revisions

Revision Number Date of Revision Revision Notes

Revision 1.0 October 20, 2009 First approved version of IVI-4.15 IviDigitizer class

specification.

Revision 2.0 June 9, 2010 Incorporated IVI.NET

Revision 2.1 October 13, 2010 Editorial changes: section 12.3.1 Configure Sample Clock

had wrong type for the source parameter.

Revision 2.2 October 14,2011 Editorial IVI.NET change.

Change references to process-wide locking to AppDomain-

wide locking.

Add an overload to the Create factory method that takes

locking related parameters.

Editorial changes:

- Section 4.1.4.1: Improve wording for better clarity.

Minor changes:

- Added section 4.3.3 Configure Active Trigger Source high

level function (IVI-C only).

- Section 11.2.3: add new attribute values for the Reference

Oscillator Source for PXI/PXIe.

Revision 2.2 June 21, 2013 Editorial IVI.NET change.

Correct spelling of PxiClk10 and PxiExpressClk100 .NET

enumeration members to match the assembly.

Change WindowConditionEnum to WindowCondition in

Section 23.3.1, .NET Method Prototype.

Revision 2.2 October 16, 2013 Editorial IVI.NET change.

Change all of the methods that use Iwaveform<Byte> to

Iwaveform<Sbyte> instead.

Revision 2.2 September 24, 2015 Editorial Change ï Clarified the use of one-based index for

COM, and zero-based index for .NET for repeated

capabilities in sections 4.2.5, 4.2.27, and 16.2.11.

Revision 2.2 October 14, 2016 Editorial Change ï Modified header text for table 37.2 to

indicate that the messages do not apply to .NET exceptions.

Revision 2.3 May 19, 2017 Editorial Change ï Change IWaveformCollection<T> to

derive from IEnumerable<IWaveform<T>> rather than

Enumerable<T>.

Revision 2.3 June 7, 2019 Editorial Change ï Correct the description of the way that

multi-record waveform start times are handled in .NET in

section 5.3.2.

IVI Foundation 13 IVI-4.15: IviDigitizer Class Specification

API Versions

Architecture Drivers that comply

with version 2.3

comply with all of

the versions below.

C 1.0, 2.0

COM 1.0, 2.0

.NET 2.3

Drivers that comply with this version of the specification also comply with earlier, compatible versions of

the specification as shown in the table above. The driver may benefit by advertising that it supports all the

API versions listed in the table above.

IVI-4.15: IviDigitizer Class Specification 14 IVI Foundation

1. Overview of the IviDigitizer Specification

1.1 Introduction

This specification defines the IVI class for frequency digitizers. The IviDigitizer class is designed to

support the typical digitizer as well as common extended functionality found in more complex instruments.

This section summarizes the IviDigitizer Class Specification and contains general information that the

reader might need in order to understand, interpret, and implement aspects of this specification. These

aspects include the following:

¶ IviDi gitizer class overview

¶ The definitions of terms and acronyms

¶ References

1.2 IviDigitizer Class Overview

This specification defines the IVI class for digitizers called IviDigitizer. The IviDigitizer class is designed

to support the typical digitizer as well as common extended functionality found in more complex

instruments. The IviDigitizer class conceptualizes a digitizer as an instrument that can acquire time varying

voltage waveforms.

The IviDigitizer class is divided into the base capability group and extensions. The base capability group

functions and attributes are used to configure a digitizer for typical waveform acquisition (this includes

setting the channel, the acquisition, and the triggering sub-systems), initiating the waveform acquisition,

and returning a waveform. The base capability group support only edge triggering. The IviDigitizerBase

Capabilities are described in Section 4.

In addition to the base capabilities, the IviDigitizer class defines extended capabilities for digitizers that

can:

¶ Combine channels for higher acquisition rates and longer waveform records

¶ Have advanced triggering options such as TV, runt, glitch, width, and Window

¶ Retrieve time-stamped data

¶ Use an external frequency reference

¶ Report device and channel temperatures

¶ Trigger or arm on multiple sources

The IviDigitizer extended capabilities are arranged into a set of extension capability groups.

1.3 References

Several other documents and specifications are related to this specification. These other related documents

are as follows:

IVI -3.1: Driver Architecture Specification

IVI -3.2: Inherent Capabilities Specification

IVI -3.3: Standard Cross Class Capabilities Specification

IVI -3.18: IVI.NET Utility Classes and Interfaces Specification

IVI - 5.0: Glossary

1.4 Definitions of Terms and Acronyms

Refer to IVI-5.0: Glossary for a description of the terms and acronyms used in this specification. This

IVI Foundation 15 IVI-4.15: IviDigitizer Class Specification

specification does not define any additional terms.

IVI-4.15: IviDigitizer Class Specification 16 IVI Foundation

2. IviDigitizer Class Capabilities

2.1 Introduction

The IviDigitizer specification divides digitizer capabilities into a base capability group and multiple

extension capability groups. Each capability group is discussed in a separate section. This section defines

names for each capability group and gives an overview of the information presented for each capability

group.

2.2 IviDigitizer Group Names

The capability group names for the IviDigitizer class are defined in the following table. The Group Name is

used to represent a particular capability group and is returned as one of the possible group names from the

Class Group Capabilities attribute.

Table 2-1. IviDigitizer Group Names

Group Name Description

IviDigitizerBase Base Capabilities of the IviDigitizer specification. This

group includes the capability to acquire waveforms

using edge triggering.

IviDigitizerMultiRecordAcquisition Extension: IviDigitizer with the ability to do multi-

record acquisitions.

IviDigitizerBoardTemperature Extension: IviDigitizer with the ability to report the

temperature of the digitizer.

IviDigitizerChannelFilter Extension: IviDigitizer with the ability to control the

channel input filter frequency.

IviDigitizerChannelTemperature Extension: IviDigitizer with the ability to report the

temperature of individual digitizer channels.

IviDigitizerTimeInterleavedChannels Extension: IviDigitizer with the ability to combine two

or more input channels to achieve higher acquisitions

rates and/or record lengths.

IviDigitizerDataInterleavedChannels Extension: IVIdigitizer with the ability to interleave the

data from two or more input channels, usually to create

complex (I/Q) data.

IviDigitizerReferenceOscillator Extension: IviDigitizer with the ability to use an

external reference oscillator.

IviDigitizerSampleClock Extension: IviDigitizer with the ability to use an

external sample clock.

IviDigitizerSampleMode Extension: IviDigitizer with the ability to control

whether the digitizer is using real-time or equivalent-

time sampling.

IviDigitizerSelfCalibration Extension: IviDigitizer with the ability to perform self

calibration.

IviDigiti zerDownconversion Extension: IviDigitizer with the ability to do frequency

translation or downconversion in hardware.

IviDigitizerArm Extension: IviDigitizer with the ability to arm on

positive or negative edges.

IVI Foundation 17 IVI-4.15: IviDigitizer Class Specification

Table 2-1. IviDigitizer Group Names

Group Name Description

IviDigitizerMultiArm Extension: IviDigitizer with the ability to arm on one

or more sources.

IviDigitizerGlitchArm Extension: IviDigitizer with the ability to arm on

glitches.

IviDigitizerRuntArm Extension: IviDigitizer with the ability to arm on runts.

IviDigitizerSoftwareArm Extension: IviDigitizer with the ability to arm

acquisitions.

IviDigitizerTVArm Extension: IviDigitizer with the ability to arm on

standard TV signals.

IviDigitizerWidthArm Extension: IviDigitizer with the ability to arm on a

variety of conditions regarding pulse widths.

IviDigitizerWindowArm Extension: IviDigitizer with the ability to arm on

signals entering or leaving a defined voltage range.

IviDigitizerTriggerModifier Extension: IviDigitizer with the ability to perform an

alternative triggering function in the event that the

specified trigger event doesnôt occur.

IviDigitizerMultiTrigger Extension: IviDigitizer with the ability to trigger on

one or more sources.

IviDigitizerPretriggerSamples Extension: IviDigitizer with the ability to specify a

number of samples to fill up the data buffer with pre-

trigger data.

IviDigitizerTriggerHoldoff Extension: IviDigitizer with the ability to specify a

length of time after the digitizer detects a trigger during

which the digitizer ignores additional triggers.

IviDigitizerGlitchTrigger Extension: IviDigitizer with the ability to trigger on

glitches.

IviDigitizerRuntTrigger Extension: IviDigitizer with the ability to trigger on

runts.

IviDigitizerSoftwareTrigger Extension: IviDigitizer with the ability to trigger

acquisitions.

IviDigitizerTVTrigger Extension: IviDigitizer with the ability to trigger on

standard television signals.

IviDigitizerWidthTrigger Extension: IviDigitizer with the ability to trigger on a

variety of conditions regarding pulse widths.

IviDigitizerWindowTrigger Extension: IviDigitizer with the ability to trigger on

signals entering or leaving a defined voltage range.

IVI-4.15: IviDigitizer Class Specification 18 IVI Foundation

2.3 Repeated Capability Names

The IviDigitizer Class Specification defines three repeated capabilities. Refer to the sections of IVI-3.1,

Driver Architecture Specification that deal with repeated capabilities. The relevant sections are Section 2.7,

Repeated Capabilities, Section 4.1.9, Repeated Capabilities, Section 4.2.5, Repeated Capabilities, Section

4.3.9, Repeated Capabilities, and Section 5.9, Repeated Capability Identifiers and Selectors.

¶ Channel

¶ ArmSource

¶ TriggerSource

2.3.1 Channel

In the configuration store, the name for the Channel repeated capability shall be exactly one of ñChannelò

or ñIviDigitizerChannelò. Drivers that implement multiple repeated capabilities with the name ñChannelò

shall use the latter form to disambiguate the name.

2.3.2 ArmSource

In the configuration store, the name for the ArmSource repeated capability shall be exactly one of

ñArmSourceò or ñIviDigitizerArmSourceò. Drivers that implement multiple repeated capabilities with the

name ñArmSourceò shall use the latter form to disambiguate the name.

2.3.3 TriggerSource

In the configuration store, the name for the TriggerSource repeated capability shall be exactly one of

ñTriggerSourceò or ñIviDigitizerTriggerSourceò. Drivers that implement multiple repeated capabilities with

the name ñTriggerSourceò shall use the latter form to disambiguate the name.

2.4 Boolean Attribute and Parameter Values

This specification uses True and False as the values for Boolean attributes and parameters. The following

table defines the identifiers that are used for True and False in the IVI.NET, IVI-COM, and IVI-C

architectures.

Boolean Value IVI.NET Identifier IVI -COM Identifier IVI -C Identifier

True true VARIANT_TRUE VI_TRUE

False false VARIANT_FALSE VI_FALSE

2.5 .NET Namespace

The .NET namespace for the IviDigitizer class is Ivi. Digitizer .

2.6 .NET IviDigitizer Session Factory

The IviDigitizer .NET assembly contains a factory method called Create for creating instances of

IviDigitizer class-compliant IVI.NET drivers from driver sessions and logical names. Create is a static

method accessible from the static IviDigitizer class.

IVI Foundation 19 IVI-4.15: IviDigitizer Class Specification

Refer to IVI-3.5: Configuration Server Specification for a description of how logical names and session

names are defined in the configuration store.

Refer to Section 8, IVI.NET Specific Driver Constructor, of IVI-3.2: Inherent Capabilities Specification,

for more details on how the idQuery , reset , and options parameters affect the instantiation of the

driver.

Refer to Section 4.3.11, Multithread Safety, of IVI-3.1: Driver Architecture Specification for a complete

description of IVI.NET driver locking. Refer to Section 8, Table 8.2 Required Lock Type Behavior for

Drivers With the Same Access Key, of IVI-3.2, Inherent Capability Specification, for an explanation of

how the values for lockType and accessKey are used to determine the kind of multithreaded lock to use

for the driver instance.

.NET Method Prototype

IIviDigitizer Ivi . Digitizer.Create(String name);

IIviDigitizer Ivi . Digitizer.Create(String name,

 Boolean idQuery,

 Boolean reset);

IIviDigitizer Ivi . Digitizer.Create(String name,

 Boolean idQuery,

 Boolean reset,

 String options);

IIviDigitizer Ivi.Digitizer.Create(String resourceName,

 Boolean idQuery,

 Boolean reset,

 LockType lockType,

 String accessKey,

 String optio ns);

Parameters

Inputs Description Base Type

name A session name or a logical name that points to a session

that uses an IVI.NET IviDigitizer class-compliant driver.

String

idQuery Specifies whether to verify the ID of the instrument. The

default is False.

Boolean

reset Specifies whether to reset the instrument. The default is

False.

Boolean

lockType Specifies whether to use AppDomain-wide locking or

machine-wide locking.

Ivi.Driver.LockType

accessKey Specifies a user-selectable access key to identify the lock.

Driver instances that are created with the same accessKey

will be protected from simultaneous access by multiple

threads within an AppDomain or across AppDomains,

depending upon the value of the lockType parameter.

String

options A string that allows the user to specify the initial values of

certain inherent attributes. The default is an empty string.

String

Outputs Description Base Type

Return Value Interface reference to the IIviDigitizer interface of the

driver referenced by session .

IIviDigitizer

IVI-4.15: IviDigitizer Class Specification 20 IVI Foundation

Defined Values

Name Description

 Language Identifier

AppDomain The lock is AppDomain-wide.

 .NET Ivi.Driver.LockType.AppDomain

Machine The lock is machine-wide.

 .NET Ivi.Driver.LockType.Machine

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

Usage

To create a driver that implements the IviDigitizer instrument class API from the logical name ñMy

LogicalNameò, use the following:

IIvi Digitizer counter = Ivi Digitizer .Create(ñMyLogicalNameò);

In this case, the ID of the instrument will not be verified, the instrument will not be reset, and options will

be supplied from the configuration store and/or driver defaults.

IVI Foundation 21 IVI-4.15: IviDigitizer Class Specification

3. General Requirements
This section describes the general requirements a specific driver must meet in order to be compliant with

this specification. In addition, it provides general requirements that specific drivers must meet in order to

comply with a capability group, attribute, or function.

3.1 Minimum Class Compliance

To be compliant with the IviDigitizer Class Specification, an IVI specific driver shall conform to all of the

requirements for an IVI class-compliant specific driver as specified in IVI-3.1: Driver Architecture

Specification, implement the inherent capabilities that IVI-3.2: Inherent IVI Capabilities Specification

defines, and implements the IviDigitizerBase capability group.

3.1.1 Disable

Refer to IVI-3.2: Inherent Capabilities Specification for the prototype of this function. The IviDigitizer

specification does not define additional requirements on the Disable function.

3.2 Capability Group Compliance

IVI-3.1: Driver Architecture Specification defines the general rules for a specific driver to be compliant

with a capability group.

IVI-4.15: IviDigitizer Class Specification 22 IVI Foundation

4. IviDigitizerBase Capability Group

4.1 Overview

The IviDigitizer base capabilities support digitizers that can acquire waveforms from multiple channels

with an edge trigger. The IviDigitizer base capabilities define attributes and their values to configure the

digitizerôs channel, acquisition, and trigger sub-systems. The IviDigitizer base capabilities also include

functions for configuring the digitizer as well as initiating waveform acquisition and retrieving waveforms.

The IviDigitizer base capabilities organize the configurable settings into three main categories: the channel

sub-system, the acquisition sub-system, and the trigger sub-system.

4.1.1 Channel Sub-System

The channel sub-system configures the range of voltages the digitizer acquires and how the digitizer

couples the input signal to the acquisition sub-system. The main channel sub-system attributes include:

¶ Channel Enabled

¶ Vertical Coupling

¶ Vertical Range

¶ Vertical Offset

All of the channel sub-system attributes represent capabilities that are repeated on each of an instrumentôs

channels. They can be set as a group with the Configure Channel function.

For each channel, the Channel Enabled attribute specifies whether the digitizer acquires a waveform for

that channel. This attribute may be used to simply disable an unused channel, but will be more useful when

using the capabilities in extension groups for combining channels (for increased sample rate) or allocating

memory (so an unused channelôs memory will become available to other active channels). For instance, if

two channels have been combined into one, one of those channels must be disabled. This attribute can later

be read to determine which channel is active and which is not.

The Vertical Coupling attribute specifies how to couple the input signal to the channel sub-system. Most

digitizers will support AC coupling (which blocks any DC component of the input signal) and DC coupling

(which allows the entire signal, including any DC offset, to be sampled).

The Vertical Range attribute specifies the absolute value of the range of voltages that the digitizer acquires.

This range is specified as a peak-to-peak voltage number. The value of the Vertical Offset parameter

determines the center of this range.

The Vertical Offset attribute specifies the center of the range specified by the Vertical Range attribute with

respect to ground.

It is important for these parameters to be set properly before a signal is measured. Digitizers perform best if

the input signal is scaled to a range that matches the physical measurement range of the analog-to-digital

conversion hardware. Otherwise, clipping of the signal may occur or quantization noise may increase.

Table 4-1displays some relevant examples.

IVI Foundation 23 IVI-4.15: IviDigitizer Class Specification

Table 4-1. Examples of sampled data versus channel property settings

Actual applied signal (sinewave with 1-volt

amplitude and 0.2-volt DC offset)

Measured data with:

¶ Vertical offset = 0.2

¶ Vertical range = 2

¶ Coupling = DC

Measured data with:

¶ Vertical offset = 0

¶ Vertical range = 2

¶ Coupling = DC

Measured data with:

¶ Vertical offset = 0

¶ Vertical range = 2

¶ Coupling = AC

Measured data with:

¶ Vertical offset = 0.2

¶ Vertical range = 2

¶ Coupling = AC

-1.5

0

1.5

-1.5

0

1.5

Vertical offset = 0.2

Vertical range = 2

-1.5

0

1.5

Vertical offset = 0.0

Vertical range = 2

-1.5

0

1.5

Vertical offset = 0.0

Vertical range = 2

Vertical offset = 0.2

Vertical offset =
0.2

IVI-4.15: IviDigitizer Class Specification 24 IVI Foundation

4.1.2 Acquisition Sub-System

The acquisition sub-system configures the number of waveform records, the size of each record, and the

sample rate. The configurable Acquisition sub-system attributes include:

¶ Sample Rate

¶ Num Records

¶ Record Size

While very simple digitizers may support only a single sample rate and can record only a single record,

more advanced digitizers can vary the sample rate and can collect multiple independent sets of data with a

single acquisition, with the ability to flexibly allocate memory resources as needed.

The Sample Rate attribute controls the data sample rate, in number of samples per second. Some digitizers

may have the ability to accept an arbitrary value for this attribute (up to a given limit), while others may

support only one possible value or a list of discrete values. If a value is specified that the digitizer cannot

support, the value is coerced to the next highest sample rate that can be supported. If a value is specified

that is higher than the maximum sample rate available in the digitizer, an error will be returned.

Note that some digitizers have the ability to combine multiple channels together, resulting in a single

channel with twice the maximum sample rate. In the IviDigitizer interface, this feature is controlled with

the IviDigitizerTimeInterleavedChannels extension group. The Sample Rate attribute is sensitive to this

feature. If channels are combined, the maximum value for Sample Rate will increase accordingly.

The Num Records and Record Size attributes control the number and size of distinct data records that a

digitizer will capture for a single acquisition. An acquisition begins with a call to the Initiate Acquisition

function. Generally speaking, when an acquisition is initiated the digitizer will wait for a trigger event to

occur (see section 4.1.4 for a description of the trigger sub-system) and will then record sampled data in a

memory buffer. Each such data set is referred to as a record. Simple digitizers will be able to collect only a

single record for each acquisition. More sophisticated digitizers will have the ability to collect multiple data

records in a single acquisition. This feature requires multiple trigger events. Before the acquisition begins,

the Num Records attribute determines the number of records to capture, and the Record Size attribute

determines the size of each record. When acquisition begins the digitizer fills up a record and waits for

another trigger event before proceeding to fill up the next record. The process continutes until Num Records

have been captured, at which time the digitizer will return to an idle state. To retrieve data from a multi-

record acquisition, the Fetch functions from the IviDigitizerMultiRecordAcquisition extension group

(section 5) must be used.

When capturing data, it is up to the user to manage the digitizerôs memory. Some digitizers have fixed

memory configurations while others may have global memory blocks that can be allocated as needed. Each

active channel will capture Num Records records. The total amount of memory required for this depends on

the number of records, the size of each record, and the number of active channels.1 If the user attempts to

allocate more memory than the digitizer has available, the driver will return an error.

The Fetch functions from the IviDigitizerMultiRecordAcquisition extension group (section 5) can also be

used for fetching partial records. This is useful for example when the digitizer memory is so large that the

data must be fetched in chunks.

1 Note that channels may become inactive for more than one reason ï they can be intentionally turned off because

they are unused, or they may be combined with other channels to obtain a higher sample rate. In either case there

may be an effect on the amount of memory available, depending on the capabilities of the specific digitizer.

IVI Foundation 25 IVI-4.15: IviDigitizer Class Specification

4.1.3 IviDigitizer Arm and Trigger States

The IviDigitizer interface supports both arming and triggering states in digitizers. For digitizers that support

it, the full state diagram is shown in Figure 4-1.

Figure 4-1 IviDigitizer Arm/Trigger Model

Digitizers are not required to support all of the possible states. In particular, many digitizers do not support

arming. However, for digitizers that do support it, the IviDigitizer interface includes both a Trigger sub-

system and an Arm sub-system, both of which work in the same fashion.

IVI-4.15: IviDigitizer Class Specification 26 IVI Foundation

4.1.4 Trigger Sub-System

The trigger sub-system configures the type of event that triggers the digitizer. The global trigger subsystem

attributes are:

¶ Active Trigger Source

¶ Trigger Delay

¶ Trigger Holdoff

¶ Trigger Modifier

¶ Pretrigger Samples

The Active Trigger Source attribute (a string) specifies which of the available trigger sources is to be used.

The Trigger Delay attribute attribute specifies the position of the first point in the captured waveform

record relative to the Trigger Event. If the Trigger Delay value is positive, the first point in the waveform

record occurs after the trigger event. If the value is negative, the first point in the waveform record occurs

before the trigger event. Note that this specification uses the term Trigger Delay instead of the Acquisition

Start Time terminology employed by the Iviscope specification. In typical systems, these represent the
same quantity.

The Trigger Holdoff attribute specifies the length of time after the digitizer detects a trigger during which

the digitizer ignores additional triggers. The Trigger Holdoff attribute affects the instrument operation only

when the digitizer is configured to acquire multiple records (the Num Records attribute is greater than 1). If

a trigger event occurs while the digitizer is still filling up a record, it will be ignored even if the Trigger

Holdoff attribute is set to zero. This attribute is identical to the Trigger Holdoff attribute in the IviScope

interface.

The Trigger Modifier attribute specifies the digitizerôs behavior in the absence of the configured trigger.

This attribute is identical to the Trigger Modifier attribute in the IviScope interface.

The Pretrigger Samples attribute is defined as the number of samples needed to fill up the data buffer with

pre-trigger data. This attribute is used to capture as much pre-trigger data as possible without losing

important events.

While the Pretrigger Samples attribute and the Trigger Holdoff attribute can be used to obtain similar

results, these attributes actually perform quite different functions and are used for different applications.

¶ Trigger Holdoff is measured from the time of a trigger event, and is specified in units of time (seconds).

It is used in situations where the user is attempting to trigger on a part of a long repeating signal. When

the data capture buffer is filled, the Trigger Holdoff attribute can be used to prevent the digitizer from

triggering again until the sequence repeats itself. Trigger Holdoff is measured starting from the time of

the trigger.

¶ Pretrigger Samples is used to gather as much pre-trigger data as possible, without missing an important

event. Pretrigger Samples is measured in number of samples and is the minimum number of samples that

must be recorded before the digitizer will respond to a trigger event. This guarantees that some data will

be recorded before the trigger event occurs. The counting of pretrigger samples begins when the user

calls the Initiate Acquisition function. When recording multiple records, the counting of pretrigger

samples begins after each prior record is filled and when the digitizer is able to collect a new data record,

i.e., at the end of the preceding record plus any re-arm time that the digitizer may require.

Trigger Holdoff and Pretrigger Samples are not equivalent, although they do perform similar functions. The

difference lies in subtle timing relationships between these parameters and the trigger event. Trigger

Holdoff is measured starting from the time of a trigger event, while Pretrigger Samples is measured from

the time that the digitizer is ready to capture a new record (the time recording the previous record is

IVI Foundation 27 IVI-4.15: IviDigitizer Class Specification

finished plus the re-arm time, if any). This means that Pretrigger Samples timing is always synchronous

with the sample clock. Trigger Holdoff is not synchronous with the sample clock, since the actual trigger

event may occur at any time.

Error! Reference source not found. below illustrates the relationship between Trigger Holdoff and

Pretrigger Samples. The upper half of the figure illustrates Trigger Holdoff for an acquisition with Num

Records greater than one. Here, the second (and subsequent) triggers will not be accepted until the data

acquisition is finished and the holdoff period has expired. The lower half illustrates Pretrigger Samples and

shows how trigger events will not be accepted until a sufficient number of samples has been collected in

the digitizerôs data buffer.

4.1.4.1 Setting Up Triggers

The process for setting triggers in the IviDigitizer interface is simple, but the IviDigitizer trigger subsystem

works differently from triggers in the IviScope interface. In IviDigitizer, triggers are a repeated capability.

Trigger parameters like the Trigger Coupling and Trigger Level attributes are associated with each trigger

source ï they are not global parameters as in the IviScope interface. The interface includes an Active

Trigger Source attribute (a string) that is used to specify which of the available trigger sources is to be

used.

To set up a trigger, simply follow these steps:

1. Set the Active Trigger Source attribute. This is a string that specifies a particular trigger source, such as

ñChannel 1ò. Trigger sources are a repeated capability, and the valid trigger source names can be

discovered by traversing the TriggerSource repeated capability list.

2. Set the Trigger Type attribute. This attribute is specific to each Trigger Source. Like all other Trigger

Source attributes, setting this attribute applies only to the specified trigger source repeated capability.

If the Active Trigger Source is changed to another trigger source, the (active) trigger type may change

as well.

Holdoff

(No Triggers)

Trigger Trigger

Data Acquisition Data Acquisition

 Pretrigger

Samples

TriggerNo Trigger

Data Acquisition

Vertical range = 2

IVI-4.15: IviDigitizer Class Specification 28 IVI Foundation

3. Refer to this document or to the vendorôs document to determine what other parameters need to be set
for the given Trigger Type. For instance, if using an edge trigger then the Trigger Level and Trigger

Slope attributes should be set. Different trigger types have different requirements.

Each trigger source has the following attributes:

¶ Trigger Coupling

¶ Trigger Hysteresis

¶ Trigger Level

¶ Trigger Type

The Trigger Coupling attribute specifies how the digitizer couples the trigger source to the trigger sub-

system. Commonly, this attribute will be set to DC (which allows the trigger signal to be used without

modification) or AC (which strips away any DC component of the trigger signal). The IviDigitizer interface

also includes a number of more complex coupling types that mirror the capabilities in the IviScope

interface.

The Trigger Hysteresis attribute specifies the trigger hysteresis in Volts.

The Trigger Level attribute specifies the voltage threshold for the trigger sub-system.

The Trigger Type attribute specifies the type of event that triggers the digitizer. The most common type of

trigger is the edge trigger, which causes the instrument to trigger whenever a signal passes through a

predefined voltage level. The IviDigitizer interface mirrors the IviScope interface, and includes a number

of complex trigger types that are supported identically in both IviDigitizer and IviScope. For each

supported trigger type, the IviDigitizer interface includes a number of special-purpose attributes that are

used to control the triggering operation.

For digitizers that support it, the IviDigitizer interface includes the ability to specify arming conditions for

triggering. Arming is set up in the same fashion as triggering, using the IviDigitizerArm extension group.

The IviDigitizer interface also supports the use of multiple trigger sources for a single acquisition. For

digitizers that support it, this feature is controlled with the IviDigitizerMultiTrigger extension group. This

allows multiple trigger sources to be specified. The trigger sources can be ANDôed together (so that all

triggers must occur before the instrument to make a measurement) or ORôed together (so that the first-

occurring trigger event causes the instrument to make a measurement).

4.1.4.2 Configuring Edge Triggers

The following attributes configure the edge trigger. These attributes can be set as a group with the

Configure Edge Trigger Source function.

¶ Trigger Level

¶ Trigger Source

¶ Trigger Slope

The Trigger Level attribute specifies the voltage threshold for the trigger sub-system. The Trigger Source

attribute specifies the source the digitizer monitors for the trigger event. Most of the trigger types use the

values held in the Trigger Level and Trigger Source attributes.

IVI Foundation 29 IVI-4.15: IviDigitizer Class Specification

Figure 4-2 Edge Triggers

The Trigger Slope attribute specifies whether a positive or negative edge triggers the digitizer.

When the trigger type is edge, the values held in the Trigger Level, Trigger Source, and Trigger Slope

attributes define the trigger event. The digitizer triggers when the signal from the trigger source crosses the

threshold level with the polarity that the Trigger Level and Trigger Coupling attributes specify.

4.1.4.3 Software Triggers

One type of trigger source is ñsoftwareò. Setting the Active Trigger Source attribute to Software means that

the instrument will only trigger when given a software command. To execute a software trigger, use the

SendSoftwareTrigger function.

If the SendSoftwareTrigger function is called when the Active Trigger Source attribute is not set to

Software, an error will be returned.

For digitizers that support arming, the Active Arm Source can also be set to Software. In this circumstance

the SendSoftwareArm command is used to arm the instrument.

4.1.4.4 Immediate Triggers

Another type of trigger is ñimmediateò. Setting the Active Trigger Source attribute to Immediate means that

the instrument will trigger immediately, without waiting for any event.

The Trigger Type attribute has no effect on Immediate triggers.

If using multiple triggers, Immediate cannot be one of the specified trigger sources. Doing so will return an

error.

4.1.4.5 Using Disabled Channels as Trigger Sources

Some digitizer implementations include the ability to trigger on signals in disabled channels. Although data

is not available from disabled channels, they may still be available for use as trigger sources. The

IviDigitizer interface supports this functionality but does not require it. Users should refer to the

manufacturerôs documentation to learn more about this capability in any given digitizer.

IVI-4.15: IviDigitizer Class Specification 30 IVI Foundation

4.1.5 Reading Data

The IviDigitizerBase Capabilities define functions that retrieve waveforms from the digitizer. These

functions return the following information:

¶ The waveform record as an array of voltages.

¶ The time that corresponds to the first point in the waveform array relative to the trigger event (the

InitialXOffset)

¶ The first valid data point and the number of valid data points in the waveform record.

The true time reference for a captured waveform is the Trigger Event, not the sampling times, because the

trigger event occurs asynchronously with respect to the sampling clock. Thus, the time between the trigger

event and the next sampling clock pulse varies randomly in the range [0 é sampling interval]. When

reading data, one value that is returned is the InitialXOffset, which specifies the position of the first point in

the waveform record relative to the trigger event. If the value is positive, the first point in the waveform

record occurs after the trigger event. If the value is negative, the first point in the waveform record occurs

before the trigger event. Figure 4-3 hows an example of an acquisition with a positive acquisition start time

(positive Trigger Delay attribute) while Figure 4-4 shows the effect of the negative acquisition start time

value (negative Trigger Delay). Note that both figures show Trigger Holdoff, which only applies when

multiple records are being captured.

Trigger Offset

(always zero if
TTI is used)

Trigger Delay > 0

Trigger

First data point

Sample

Interval

InitialX > 0

Waveform

Record

Trigger Holdoff

Trigger

Pre-Trigger

Samples
Re-arm Time

Figure 4-3 Positive Trigger Delay

IVI Foundation 31 IVI-4.15: IviDigitizer Class Specification

Trigger Offset

(always zero if

TTI is used) Trigger Delay< 0

Trigger

First data point

Sample
Interval

InitialX < 0

Waveform Record

Pre-Trigger

Samples
Re-arm Time

Trigger Holdoff

Figure 4-4 Negative Trigger Delay

The Trigger Offset value shown in these figures measures the time between the trigger event and the first

captured data point. Some digitizers feature a Trigger Time Interpolator (TTI) which shifts all the

samples in time using interpolation in order to align the first sample with the start of the acquisition. In

such a case, the value of InitialX is always exactly equal to the acquisition start time (and it will match the

Trigger Delay).

The Re-arm Time value shown in these figures is an important characteristic of some digitizers. These

digitizers are not able to start a new acquisition immediately following the preceding acquisition ï they

require some time for memory management and other internal functions. The re-arm time is not

controllable by the user and is not addressed in the IviDigitizer interface, but it is important to consider

when writing software to control digitizers.

4.1.5.1 Allocating Waveform Buffer Memory

In Read and Fetch calls, it is important to allocate sufficient amounts of memory for the waveform buffer.

If the waveform buffer is not large enough to hold all of the requested data, the driver will fill the buffer as

fully as possible and return the number of points that were actually retrieved in the function callôs

ActualPoints parameter. To retrieve the remainder of the data, one or more additional Fetch calls must be

made. Although the IviDigitizer driver supports this operation, it results in a performance degradation that

is unnecessary if enough memory is available.

The amount of memory needed may be greater than one might expect. To maximize data transfer rates,

some digitizers are designed to perform DMA transfers at defined memory boundaries. Depending on the

alignment of the data buffer, this can result in a few ñgarbageò data points at the beginning of the buffer.

(These invalid points are identified by means of the FirstValidPoint parameter in Read and Fetch function

calls.) Other digitizers may make temporary use of extra buffer memory to increase performance when

retrieving multiple records. In the case of multi-record acquisitions, the digitizerôs memory is divided into

segments, one for each record. Some digitizers manage their internal memory by pages of fixed size, with

the constraint that a segment must start at the beginning of a page. Readout may also be constrained by

entire pages, and may be further complicated when time- or data-interleaving of channels is used. All these

constraints can introduce significant overhead in the amount of memory that must be reserved for each

record, especially when the number of points per record is small. Finally, for digitizers allowing the capture

of pre-trigger data, the memory is used as a circular buffer continuously recording samples, until the

acceptance of a valid trigger defines the actual beginning of the record. In this case, the superfluous

IVI-4.15: IviDigitizer Class Specification 32 IVI Foundation

samples may be located anywhere in the segment, so that a reordering of the samples by the driver must be

performed. An additional segment of memory allows performing this operation more efficiently.

An example of the memory after a 5-record acquisition with a digitizer using circular buffers, and requiring

segment ñpaddingò and reordering is shown in Figure 4-5.

Figure 4-5 Digitizer memory immediately after a multi-record acquisition

The best readout performance (especially for small record sizes) is usually obtained by transferring the

whole acquisition at once, and to perform the reordering on the host computer. To be able to easily perform

this reordering of each record, a digitizer manufacturer may choose to require the waveform buffer to be

larger than the digitizer memory by one segment, as shown in Figure 4-6.

Figure 4-6 Waveform buffer memory for multi-record readout

The whole acquisition is transferred as depicted in Figure 4-7 (note that this is an intermediate state), and

the reordering can then be performed as shown in Figure 4-8.

IVI Foundation 33 IVI-4.15: IviDigitizer Class Specification

Figure 4-7 Multi -record transfer

Figure 4-8 Reordering of the records

After reordering, each record has contiguous samples. All records may also be placed contiguously, and the

(consolidated) padding pushed to the end of the buffer, e.g. as shown in Figure 4-9.

IVI-4.15: IviDigitizer Class Specification 34 IVI Foundation

Figure 4-9 Waveform buffer memory after circular buffer reordering of the records

Another example for a 5-records acquisition is shown in Figure 4-10. In this case, all records have been

transferred from the digitizer into the waveform buffer as contiguous data blocks and do not require

reordering of the record samples. However, alignment constraints may still exist. As a result, the return

parameter FirstValidPoint must be used to obtain the index of the first point of each record when reading

the waveform.

Figure 4-10 Waveform buffer memory not requiring circular buffer reordering of the records

It is important to understand that the transition between Figure 4-5 (i.e. data in the digitizer memory) and

Figure 4-9 or Figure 4-10 (i.e. data in the waveform buffer memory, ready to be accessed by the user) is

done by the digitizer and/or the driver, not the user.

Vendors generally publish these types of memory requirements in their documentation, but the IviDigitizer

interface also supports a function (QueryMinWaveformMemory) that returns the number of samples that

should be allocated for best data transfer performance. For single record Read and Fetch calls, the

maximum possible value that the FirstValidPoint output parameter may assume can be queried with the

MaxFirstValidPointValue read-only attribute.

IVI Foundation 35 IVI-4.15: IviDigitizer Class Specification

In IVI -COM, the Read and Fetch calls will allocate the proper amount of memory automatically. Instead of

passing an array into the function calls, simply pass a pointer to a NULL SAFEARRAY. The driver will

then allocate sufficient memory automatically. It is also allowed to pass a pointer to a non-NULL (user

allocated, or driver allocated from a previous call) SAFEARRAY, in which case the driver shall not

reallocate memory. For best performance, i.e. to avoid allocating the waveform buffer memory for every

Read or Fetch call, the user should let the driver allocate the SAFEARRAY buffer memory by passing a

pointer to a NULL SAFEARRAY on the first call, ensuring sufficient memory is allocated. Then the same

SAFEARRAY should be reused for subsequent calls, until acquisition parameters changes require a larger

buffer size.

In IVI -C, the waveform buffer memory must be allocated in advance by the user.

4.1.5.2 Valid Data Points

The Read and Fetch functions in the IviDigitizer interface, including those of the

IviDigitizerMultiRecordAcquisition extension group, utilize several parameters that may require some

explanation:

¶ OffsetWithinRecord

¶ ActualPoints

¶ FirstValidPoint

OffsetWithinRecord is the offset within a record to begin fetching data from. A common reason to use this

parameter would be when the digitizerôs data record is too large to be retrieved with a single Read/Fetch

call. OffsetWithinRecord specifies an offset into the digitizerôs data record. The first retrieved data point

will come from that offset ï data that comes before the OffsetWithinRecord index will not be retrieved.

Using multiple Fetch calls with appropriate values for OffsetWithinRecord and NumPointsPerRecord

allows data from a single record to be retrieved in chunks. An example of the retrieval of a partial record is

shown in Figure 4-11.

Figure 4-11 Retrieving a partial record

The ActualPoints parameter returns the number of valid data points that were retrieved from the digitizer.

This number may be less than the full size of the WaveformArray memory buffer. This may happen for any

of several reasons ï the memory buffer may be larger than needed, or the data acquisition might have been

IVI-4.15: IviDigitizer Class Specification 36 IVI Foundation

interrupted before it was finished, for instance. Also, if FirstValidPoint (see below for more details on this

parameter) is non-zero, it will necessarily be smaller than the length of the WaveformArray buffer. The

ActualPoints parameter should be examined after Read or Fetch calls to ensure that valid data was returned.

FirstValidPoint is used to maximize data transfer performance. Some digitizers transfer data to the

computer using DMA channels that must be aligned at specific byte boundaries. Transferring data into non-

aligned memory would cause a severe performance penalty. The data WaveformArray parameter, which is

intended to receive the data from the digitizer, may not be aligned at the correct memory boundary. In that

case the digitizer may transfer its data into WaveformArray memory space starting at the first available

memory location that is properly aligned. In these cases, the first few bytes of the WaveformArray memory

buffer will not contain valid data (see an example of this in section 4.1.5.1, Figure 4-10). The

FirstValidPoint parameter should be examined to determine if this situation has occurred. It gives the offset

into the WaveformArray memory buffer where the first valid data point can be found. The digitizerôs

manufacturer should supply documentation as to whether this situation should be expected to occur.

4.1.6 Combining Channels

The IviDigitizer interface allows digitizer channels to be combined in two different ways, and for two

different reasons:

¶ Some digitizers have the ability to interleave multiple analog-to-digital converter channels into a

single, higher-rate channel. This is accomplished by forcing each channel to sample the same data with

a small time offset. (Note that this means that one of the digitizerôs physical input connections will be

unused ï the signal applied to one input connector will be internally routed to two different ADCs.) If

two channels are combined, then the ADC in the first channel samples the data, followed by the ADC

from the second channel. The two ADCs proceed to sample the rest of the data in a ping-pong fashion.

This results in a sample rate that is twice the rate that either ADC could accomplish by itself.

To combine channels in this fashion, use the IviDigitizerTimeInterleavedChannels extension group.

Channels are combined using a simple comma-separated list.

In addition, some digitizers have the ability to automatically combine channels based on a desired

sample rate. If the Sample Rate attribute is set to a value that is higher than a single channel can

support, multiple channels will automatically be combined to achieve the desired sample rate. The

IviDigitizerTimeInterleavedChannelListAuto attribute is used to control this feature. This feature

should be used, if possible, in cases where instrument interchangeability is desired since the use of the

IviDigitizerTimeInterleavedChannelListAuto attribute does not depend on the name of a channel.

¶ Some digitizers include a feature that allows data from two channels to be interleaved. Usually, the

data from two channels is interleaved so that a read or fetch call returns complex (I/Q) data. Use the

IviDigitizerDataInterleavedChannels extension group to control this feature. Like the

IviDigitizerTimeInterleavedChannels extension group, the IviDigitizerDataInterleavedChannels

extension group combines channels using a comma-separated list.

The IviDigitizerDataInterleavedChannels extension group specifically allows digitizers to return

complex data values. If the real and imaginary parts of a complex signal (I and Q) are connected to two

digitizer channels, this extension group allows that data to be interleaved in read and fetch calls,

resulting in an array of complex data.

These features are distinguished in the following ways:

¶ When using time-interleaved channels, the data returned by a fetch or read call consists of points that

are sequential in time, at a higher data rate than a single ADC could support.

¶ When using data-interleaved channels, the data returned by a fetch or read call consists of several
points (one per combined channel) that were taken at the same time ï one for each channel. The

IVI Foundation 37 IVI-4.15: IviDigitizer Class Specification

following data values return data for the next time point (again, one point for each channel, sampled at

the same time).

Channels can be combined in both ways at the same time. If so, then time-interleaving applies before data-

interleaving. For instance, a four-channel digitizer may combine channels 1 and 2 to achieve a higher data

rate, and may then combine channels 3 and 4 to achieve the same data rate. Then the two remaining active

channels (channel 1 and channel 3) may be data-interleaved.

When interleaving channels, the Record Size is the number of points across all channels. Note that data-

interleaved channels cannot return an arbitrary number of data points. If two channels are data-combined,

then the number of returned points must always be a multiple of two, because each of the two channels will

return one data point per time sample. In this case, attempting to retrieve an odd number of data points

would result in a meaningless request. In Read and Fetch calls, the number of points requested must then be

a multiple of the number of combined channels. Otherwise, an error will occur. This is not the case with

time-interleaved channels, where any number of points can be returned.

4.1.6.1 Notes on the Use of Interleaved Channels

Users who often switch interleaving features on and off should be aware of some subtleties that may be

encountered.

Like all IVI drivers, the IviDigitizer interface is in some cases designed to support functionality that is not

implemented in all digitizers. The IviDigitizer interface allows for (but does not require) very general

interleaving capabilities. Digitizers that do not support the full generality of this interface are free to

implement a subset, but this subsetôs behavior must be documented.

For instance, the interface makes it possible to combine any two channels in a four-channel digitizer to

achieve a higher sample rate. The digitizer hardware may then require the other two channels be combined

as well (so there is only a single time base for the entire digitizer). In such a case, there must be two active

channels ï one chosen by the user when the two original channels are combined, and one chosen by the

digitizer when it combines the remaining pair of channels. In this case, the remaining ñactiveò channel
should be the lowest-numbered channel on the digitizer, as documented by the hardware manufacturer. But

users should be free to change the second active channel, if desired.

A similar situation applies to data-interleaved channels. It must be possible for users to choose which two

channels are to be data-interleaved, and to change this selection as needed.

Another common use case is for users to route signals to two different inputs of a digitizer and then

combine the channels to achieve higher sample rates. In this case, one of the combined channels becomes

the active channel and the other is set to the inactive state. Users can then change the active channel setting

to take data from the alternate input connectors.

In all of these cases, the programmer must first disable the active channel before changing the active

channel. This is necessary in order to avoid ñinvisibleò coupling between the Enabled state of each channel

and the ócombined channelô list. In the IVI interface, the state of the TimeInterleavedChannelList property

(which is a property of each channel) is ignored if value of the Enabled flag is ófalseô. The

TimeInterleavedChannelList property is only used for active channels. The same is true of the

DataInterleavedChannelList.

For example, suppose a two-channel digitizer is initialized so that Channel 1 is enabled, Channel 2 is

disabled, and the TimeInterleavedChannelList property of Channel 1 contains the name of Channel 2. Data

can then be taken from Channel 1 at double-data-rate speeds.

To change the active channel in this example to Channel 2, Channel 1 must be disabled, Channel 2 enabled,

and the TimeInterleavedChannelList property for Channel 2 must contain the name of Channel 1. Both

channels cannot be enabled at the same time if they are combined, and attempts to do so will result in an

error. However, both channels can be disabled at the same time as long as no Fetch/Read calls are made

while the channels are in the disabled state.

IVI-4.15: IviDigitizer Class Specification 38 IVI Foundation

4.2 IviDigitizerBase Attributes

The IviDigitizerBase capability group defines the following attributes:

¶ Active Trigger Source

¶ Channel Count

¶ Channel Enabled

¶ Channel Item (IVI -COM and IVI.NET only)

¶ Channel Name (IVI -COM and IVI.NET only)

¶ Input Connector Selection

¶ Input Impedance

¶ Is Idle

¶ Is Measuring

¶ Is Waiting For Arm

¶ Is Waiting For Trigger

¶ Max First Valid Point Value

¶ Max Samples Per Channel

¶ Min Record Size

¶ Num Acquired Records

¶ Num Records To Acquire

¶ Record Size

¶ Sample Rate

¶ Trigger Coupling

¶ Trigger Delay

¶ Trigger Hysteresis

¶ Trigger Level

¶ Trigger Output Enabled

¶ Trigger Slope

¶ Trigger Source Count

¶ Trigger Source Item (IVI-COM and IVI.NET only)

¶ Trigger Source Name (IVI-COM and IVI.NET only)

¶ Trigger Type

¶ Vertical Coupling

¶ Vertical Offset

¶ Vertical Range

This section describes the behavior and requirements of each attribute. The actual value for each attribute

ID is defined in Section 31, IviDigitizer Attribute ID Definitions.

IVI Foundation 39 IVI-4.15: IviDigitizer Class Specification

4.2.1 Active Trigger Source

Data Type Access Applies To Coercion High Level Functions

ViString R/W N/A None ConfigureActiveTriggerSource

.NET Property Name

Trigger.ActiveSource

COM Property Name

Trigger.ActiveSource

C Constant Name

IVIDIGITIZER_ATTR_ACTIVE_TRIGGER_SOURCE

Description

Specifies the source the digitizer monitors for the trigger event. The value specified here must be one of the

valid repeated capability names for the TriggerSource repeated capability.

If an IVI driver supports a trigger source and the trigger source is listed in IVI-3.3 Cross Class Capabilities
Specification, Section 3, then the IVI driver shall accept the standard string for that trigger source. This

attribute is case insensitive, but case preserving. That is, the setting is case insensitive but when reading it

back the programmed case is returned. IVI specific drivers may define new trigger source strings for trigger

sources that are not defined by IVI-3.3 Cross Class Capabilities Specification if needed.

This attribute only affects instrument behavior when either the IviDigitizerMultiTrigger extension group is

not supported or the Trigger Source Operator is set to None.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 40 IVI Foundation

4.2.2 Channel Count

Data Type Access Applies To Coercion High Level Functions

ViInt32 RO N/A None N/A

.NET Property Name

Channels.Count

This property is inherited from IIviRepeatedCapabilityCollection .

COM Property Name

Channels.Count

C Constant Name

IVIDIGITIZER_ATTR_CHANNEL_COUNT

Description

Returns the number of channels available on the device.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 41 IVI-4.15: IviDigitizer Class Specification

4.2.3 Channel Enabled

Data Type Access Applies To Coercion High Level Functions

ViBoolean R/W Channel None Configure Channel

.NET Property Name

Channels[].Enabled

COM Property Name

Channels.Item().Enabled

C Constant Name

IVIDIGITIZER_ATTR_CHANNEL_ENABLED

Description

Specifies whether the digitizer acquires a waveform for the channel.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 42 IVI Foundation

4.2.4 Channel Item (IVI-COM & IVI.NET Only)

Data Type Access Applies To Coercion High Level Functions

IIviDigitizerChannel * RO Channel None N/A

.NET Property Name

IIviDigitizerChannel Channels[String name];

This indexer is inherited from IIviRepeatedCapabilityCollection . The name parameter uniquely

identifies a particular channel in the channels collection.

COM Property Name

Channels.Item ([in] BSTR Name)

C Constant Name

N/A

Description

Channel Item uniquely identifies a channel in the channels collection. It returns an interface pointer which

can be used to control the attributes and other functionality of that channel.

The Item property takes a channel name. If the user passes an invalid value for the Name parameter, the

property returns an error.

Valid names include physical repeated capability identifiers and virtual repeated capability identifiers.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 43 IVI-4.15: IviDigitizer Class Specification

4.2.5 Channel Name (IVI-COM & IVI.NET Only)

Data Type Access Applies To Coercion High Level Functions

ViString RO Channel None N/A

.NET Property Name

Channels[] . Name

This property is inherited from IIviRepeatedCapabilityIdentification .

COM Property Name

Channels.Name ([in] LONG index)

C Constant Name

N/A

(Use the GetChannelName function.)

Description

This property returns the physical channel identifier that corresponds to the index that the user specifies. If

the driver defines a qualified channel name, this property returns the qualified name.

In COM, the index is one-based. In .NET, the index is zero-based.

For COM, if the value that the user passes for the Index parameter is less than one or greater than the value

of the Channel Count attribute, the property returns an empty string in the Name parameter and returns the

Invalid Value error.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 44 IVI Foundation

4.2.6 Input Connector Selection

Data Type Access Applies To Coercion High Level Functions

ViInt32 R/W Channel None N/A

.NET Property Name

Channels[].InputConnectorSelection

COM Property Name

Channels.Item().InputConnectorSelection

C Constant Name

IVIDIGITIZER_ATTR_INPUT_CONNECTOR_SELECTION

Description

Some digitizers include multiple connectors for each digitizer input channel. These connectors are often

simply a matter of convenience for system cabling ï multiple signals can be routed to the various

connectors, the desired signal can be sent into the digitizer by changing an internal switch. With other
digitizers, the connectors may be of different types or even different impedances. This attribute is used to

determine which connector is to be used.

Values for this attribute are 1-based. Digitizers that have only a single connector for each channel should

only support a value of 1 for this attribute.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 45 IVI-4.15: IviDigitizer Class Specification

4.2.7 Input Impedance

Data Type Access Applies To Coercion High Level Functions

ViReal64 R/W Channel Up N/A

.NET Property Name

Channels[].InputImpedance

COM Property Name

Channels.Item().InputImpedance

C Constant Name

IVIDIGITIZER_ATTR_INPUT_IMPEDANCE

Description

The input impedance of this channel. The units are Ohms.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 46 IVI Foundation

4.2.8 Is Idle

Data Type Access Applies To Coercion High Level Functions

Vi Int32 RO N/A None Is Idle (IVI-C only)

.NET Property Name

Acquisition.Status.IsIdle

.NET Enumeration Name

AcquisitionStatusResult

COM Property Name

Acquisition.Status.IsIdle

COM Enumeration Name

IviDigitizer AcquisitionStatusResult Enum

C Constant Name

IVIDIGITIZER_ATTR_IS_IDLE

Description

Returns whether the device is currently in the Idle state. If the driver cannot query the digitizer to return its

state, the driver returns the value Unknown.

Defined Values

Name Description

 Language Identifier

True The digitizer is currently in the Idle state.

 .NET AcquisitionStatusResult. True

C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_TRUE

COM IviDigitizerAcquisitionStatusResultTrue

False The digitizer is not currently in the Idle state..

 .NET AcquisitionStatusResult. False

C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_FALSE

COM IviDigitizerAcquisitionStatusResultFalse

Unknown The driver cannot query the instrument to determine if the digitizer is in the Idle state.

 .NET AcquisitionStatusResult. Unknown

C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_UNKNOWN

COM IviDigitizerAcquisitionStatusResultUnknown

IVI Foundation 47 IVI-4.15: IviDigitizer Class Specification

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 48 IVI Foundation

4.2.9 Is Measuring

Data Type Access Applies To Coercion High Level Functions

ViInt32 RO N/A None Is Measuring (IVI-C only)

.NET Property Name

Acquisition.Status.IsMeasuring

.NET Enumeration Name

AcquisitionStatusResult

COM Property Name

Acquisition.Status.IsMeasuring

COM Enumeration Name

IviDigitizerAcquisitionStatusResultEnum

C Constant Name

IVIDIGITIZER_ATTR_IS_MEASURING

Description

Returns whether the device is currently in the Measuring state. If the driver cannot query the digitizer to

return its state, the driver returns the value Unknown.

Defined Values

Name Description

 Language Identifier

True The digitizer is currently in the Measuring state.

 .NET AcquisitionStatusResult. True

C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_TRUE

COM IviDigitizerAcquisitionStatusResultTrue

False The digitizer is not currently in the Measuring state.

 .NET AcquisitionStatusResult. False

C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_FALSE

COM IviDigitizerAcquisitionStatusResultFalse

Unknown The driver cannot query the instrument to determine if the digitizer is in the Measuring

state.

 .NET AcquisitionStatusResult. Unknown

C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_UNKNOWN

COM IviDigitizerAcquisitionStatusResultUnknown

IVI Foundation 49 IVI-4.15: IviDigitizer Class Specification

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 50 IVI Foundation

4.2.10 Is Waiting For Arm

Data Type Access Applies To Coercion High Level Functions

ViInt32 RO N/A None Is Waiting For Arm (IVI-C only)

.NET Property Name

Acquisition.Status.IsWaitingForArm

.NET Enumeration Name

AcquisitionStatusResult

COM Property Name

Acquisition.Status.IsWaitingForArm

COM Enumeration Name

IviDigitizerAcquisitionStatusResultEnum

C Constant Name

IVIDIGITIZER_ATTR_IS_WAITI NG_FOR_ARM

Description

Returns whether the device is currently in the Waiting For Arm state. If the driver cannot query the

digitizer to return its state, the driver returns the value Unknown.

Defined Values

Name Description

 Language Identifier

True The digitizer is currently in the Waiting For Arm state.

 .NET AcquisitionStatusResult. True

C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_TRUE

COM IviDigitizerAcquisitionStatusResultTrue

False The digitizer is not currently in the Waiting For Arm state.

 .NET AcquisitionStatusResult. False

C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_FALSE

COM IviDigitizerAcquisitionStatusResultFalse

Unknown The driver cannot query the instrument to determine if the digitizer is in the Waiting For

Arm state.

 .NET AcquisitionStatusResult. Unknown

C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_UNKNOWN

COM IviDigitizerAcquisitionStatusResultUnknown

IVI Foundation 51 IVI-4.15: IviDigitizer Class Specification

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 52 IVI Foundation

4.2.11 Is Waiting For Trigger

Data Type Access Applies To Coercion High Level Functions

ViInt32 RO N/A None Is Waiting For Trigger (IVI -C only)

.NET Property Name

Acquisition.Status.IsWaitingForTrigger

.NET Enumeration Name

AcquisitionStatusResult

COM Property Name

Acquisition.Status.IsWaitingForTrigger

COM Enumeration Name

IviDigitizerAcquisitionStatusResultEnum

C Constant Name

IVIDIGITIZER_ATTR_IS_WAITING_FOR_TRIGGER

Description

Returns whether the device is currently in the Waiting For Trigger state. If the driver cannot query the

digitizer to return its state, the driver returns the value Unknown.

Defined Values

Name Description

 Language Identifier

True The digitizer is currently in the Waiting For Trigger state.

 .NET AcquisitionStatusResult. True

C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_TRUE

COM IviDigitizerAcquisitionStatusResultTrue

False The digitizer is not currently in the Waiting For Trigger state.

 .NET AcquisitionStatusResult. False

C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_FALSE

COM IviDigitizerAcquisitionStatusResultFalse

Unknown The driver cannot query the instrument to determine if the digitizer is in the Waiting For

Trigger state.

 .NET AcquisitionStatusResult. Unknown

C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_UNKNOWN

COM IviDigitizerAcquisitionStatusResultUnknown

IVI Foundation 53 IVI-4.15: IviDigitizer Class Specification

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 54 IVI Foundation

4.2.12 Max First Valid Point Value

Data Type Access Applies To Coercion High Level Functions

ViInt64 RO N/A None N/A

.NET Property Name

Acquisition.MaxFirstValidPointValue

COM Property Name

Acquisition.MaxFirstValidPointValue

C Constant Name

IVIDIGITIZER_ATTR_MAX_FIRST_VALID_POINT_VAL

Description

Returns the maximum value that the First Valid Point parameter of the readout functions may assume. This

value is necessary to calculate the minimum size of the required data buffer to retrieve the entire

acquisition.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 55 IVI-4.15: IviDigitizer Class Specification

4.2.13 Max Samples Per Channel

Data Type Access Applies To Coercion High Level Functions

ViInt64 RO N/A None N/A

.NET Property Name

Acquisition.MaxSamplesPerChannel

COM Property Name

Acquisition.MaxSamplesPerChannel

C Constant Name

IVIDIGITIZER_ATTR_MAX_SAMPLES_PER_CHANNEL

Description

Returns the maximum number of samples per channel that can be captured.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 56 IVI Foundation

4.2.14 Min Record Size

Data Type Access Applies To Coercion High Level Functions

ViInt64 RO N/A None N/A

.NET Property Name

Acquisition.MinRecordSize

COM Property Name

Acquisition.MinRecordSize

C Constant Name

IVIDIGITIZER_ATTR_MIN_RECORD_SIZE

Description

Indicates the minimum waveform record size. If the digitizer can support any arbitrary size record, then this

attribute returns 1.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 57 IVI-4.15: IviDigitizer Class Specification

4.2.15 Num Acquired Records

Data Type Access Applies To Coercion High Level Functions

ViInt64 RO N/A None N/A

.NET Property Name

Acquisition.Num berOf AcquiredRecords

COM Property Name

Acquisition.NumAcquiredRecords

C Constant Name

IVIDIGITIZER_ATTR_NUM_ACQUIRED_RECORDS

Description

Gets the total number of records acquired since the acquistion was last initiated. You may call this method

while an acquisition is in progress.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 58 IVI Foundation

4.2.16 Num Records To Acquire

Data Type Access Applies To Coercion High Level Functions

ViInt64 R/W N/A None Configure Acquisition Record

.NET Property Name

Acquisition.Num berOf RecordsToAcquire

COM Property Name

Acquisition.NumRecords ToAcquire

C Constant Name

IVIDIGITIZER_ATTR_NUM_RECORDS_TO_ACQUIRE

Description

Specifies the number of waveform records to acquire. One waveform record is acquired for each

recognized trigger per active channel.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 59 IVI-4.15: IviDigitizer Class Specification

4.2.17 Record Size

Data Type Access Applies To Coercion High Level Functions

ViInt64 R/W N/A None Configure Acquisition Record

.NET Property Name

Acquisition.RecordSize

COM Property Name

Acquisition.RecordSize

C Constant Name

IVIDIGITIZER_ATTR_RECORD_SIZE

Description

Specifies the number of samples to acquire in each waveform record.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 60 IVI Foundation

4.2.18 Sample Rate

Data Type Access Applies To Coercion High Level Functions

ViReal64 R/W N/A Up Configure Acquisition Record

.NET Property Name

Acquisition.SampleRate

COM Property Name

Acquisition.SampleRate

C Constant Name

IVIDIGITIZER_ATTR_SAMPLE_RATE

Description

Specifies the rate of the sample clock in samples per second.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 61 IVI-4.15: IviDigitizer Class Specification

4.2.19 Trigger Coupling

Data Type Access Applies To Coercion High Level Functions

ViInt32 R/W TriggerSource None N/A

.NET Property Name

Trigger.Sources[].Coupling

.NET Enumeration Name

TriggerCoupling

COM Property Name

Trigger.Sources.Item(). Coupling

COM Enumeration Name

IviDigitizerTriggerCouplingEnum

C Constant Name

IVIDIGITIZER_ATTR_TRIGGER_COUPLING

Description

Specifies how the digitizer couples the trigger source.

Defined Values

Name Description

 Language Identifier

AC The digitizer AC couples the trigger signal.

 .NET TriggerCoupling. AC

C IVIDIGITIZER_VAL_TRIGGER_COUPLING_AC

COM IviDigitizerTriggerCouplingAC

DC The digitizer DC couples the trigger signal.

 .NET TriggerCoupling. DC

C IVIDIGITIZER_VAL_TRIGGER_COUPLING_DC

COM IviDigitizerTriggerCouplingDC

HF Reject The digitizer filters out the high frequencies from the trigger signal.

 .NET TriggerCoupling. HFReject

C IVIDIGITIZER_VAL_TRIGGER_COUPLING_HF_REJECT

COM IviDigitizerTriggerCouplingHFReject

LF Reject The digitizer filters out the low frequencies from the trigger signal.

IVI-4.15: IviDigitizer Class Specification 62 IVI Foundation

 .NET TriggerCoupling. LFReject

C IVIDIGITIZER_VAL_TRIGGER_COUPLING_LF_REJECT

COM IviDigitizerTriggerCouplingLFReject

Noise Reject The digitizer filters out the noise from the trigger signal.

 .NET TriggerCoupling. NoiseReject

C IVIDIGITIZER_VAL_TRIGGER_COUPLING_NOISE_REJECT

COM IviDigitizerTriggerCouplingNoiseReject

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 63 IVI-4.15: IviDigitizer Class Specification

4.2.20 Trigger Delay

Data Type Access Applies To Coercion High Level Functions

ViReal64 (C/COM)

PrecisionTimeSpan (.NET)

R/W N/A Down N/A

.NET Property Name

Trigger.Delay

COM Property Name

Trigger. Delay

C Constant Name

IVIDIGITIZER_ATTR_TRIGGER_DELAY

Description

Specifies the length of time from the trigger event to the first point in the waveform record. If the value is

positive, the first point in the waveform record occurs after the trigger event. If the value is negative, the

first point in the waveform record occurs before the trigger event. For C and COM the units are seconds.

For .NET, the units are implicit in the definition of PrecisionTimeSpan.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 64 IVI Foundation

4.2.21 Trigger Hysteresis

Data Type Access Applies To Coercion High Level Functions

ViReal64 R/W TriggerSource None N/A

.NET Property Name

Trigger.Sources[].Hysteresis

COM Property Name

Trigger.Sources.Item(). Hysteresis

C Constant Name

IVIDIGITIZER_ATTR_TRIGGER_HYSTERESIS

Description

Specifies the trigger hysteresis in Volts.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 65 IVI-4.15: IviDigitizer Class Specification

4.2.22 Trigger Level

Data Type Access Applies To Coercion High Level Functions

ViReal64 R/W TriggerSource None Configure Edge Trigger Source

Configure Glitch Trigger Source

Configure Width Trigger Source

.NET Property Name

Trigger.Sources[].Level

COM Property Name

Trigger.Sources.Item(). Level

C Constant Name

IVIDIGITIZER_ATTR_TRIGGER_LEVEL

Description

Specifies the voltage threshold for the trigger sub-system. The units are Volts. This attribute affects
instrument behavior only when the Trigger Type is set to one of the following values: Edge Trigger, Glitch

Trigger, or Width Trigger.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 66 IVI Foundation

4.2.23 Trigger Output Enabled

Data Type Access Applies To Coercion High Level Functions

ViBoolean R/W N/A None N/A

.NET Property Name

Trigger.OutputEnabled

COM Property Name

Trigger.OutputEnabled

C Constant Name

IVIDIGITIZER_ATTR_TRIGGER_OUTPUT_ENABLED

Description

Specifies whether or not an accepted trigger appears at an output of the digitizer.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 67 IVI-4.15: IviDigitizer Class Specification

4.2.24 Trigger Slope

Data Type Access Applies To Coercion High Level Functions

ViInt32 R/W TriggerSource None Configure Edge Trigger Source

.NET Property Name

Trigger.Sources[].Edge.Slope

.NET Enumeration Name

Slope

COM Property Name

Trigger.Sources.Item(). Edge.Slope

COM Enumeration Name

IviDigitizerTriggerSlopeEnum

C Constant Name

IVIDIGITIZER _ATTR_TRIGGER_SLOPE

Description

Specifies whether a rising or a falling edge triggers the digitizer. This attribute affects instrument operation

only when the Trigger Type attribute is set to Edge Trigger.

Defined Values

Name Description

 Language Identifier

Negative A negative (falling) edge passing through the trigger level triggers the digitizer.

 .NET Slope. Negative

C IVIDIGITIZER_VAL_TRIGGER_SLOPE_NEGATIVE

COM IviDigitizerTriggerSlopeNegative

Positive A positive (rising) edge passing through the trigger level triggers the digitizer.

 .NET Slope. Positive

C IVIDIGITIZER_VAL_TRIGGER_SLOPE_POSITIVE

COM IviDigitizerTriggerSlopePositive

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 68 IVI Foundation

4.2.25 Trigger Source Count

Data Type Access Applies To Coercion High Level Functions

ViInt32 RO N/A None N/A

.NET Property Name

Trigger.Sources.Count

This property is inherited from IIviRepeatedCapabilityCollection .

COM Property Name

Trigger.Sources.Count

C Constant Name

IVIDIGITIZER_ATTR_TRIGGER_SOURCE_COUNT

Description

Returns the number of trigger sources available on the device.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 69 IVI-4.15: IviDigitizer Class Specification

4.2.26 Trigger Source Item (IVI-COM & IVI.NET only)

Data Type Access Applies To Coercion High Level Functions

IIviDigitizerTriggerSource * RO TriggerSource None N/A

.NET Property Name

IIviDigitizerTriggerSource Sources[String name];

This indexer is inherited from IIviRepeatedCapabilityCollection . The name parameter uniquely

identifies a particular trigger source in the trigger sources collection.

COM Property Name

Trigger.Sources.Item([in] BSTR Name)

C Constant Name

N/A

Description

Trigger Source Item uniquely identifies a trigger source in the trigger sources collection. It returns an

interface pointer which can be used to control the attributes and other functionality of that trigger source.

The Item property takes a trigger source name. If the user passes an invalid value for the Name parameter,

the property returns an error.

Valid names include physical repeated capability identifiers and virtual repeated capability identifiers.

If an IVI driver supports a trigger source and the trigger source is listed in IVI-3.3 Cross Class Capabilities

Specification, Section 3, then the IVI driver shall accept the standard string for that trigger source. This

attribute is case insensitive, but case preserving. That is, the setting is case insensitive but when reading it

back the programmed case is returned. IVI specific drivers may define new trigger source strings for trigger

sources that are not defined by IVI-3.3 Cross Class Capabilities Specification if needed.

IVI-4.15: IviDigitizer Class Specification 70 IVI Foundation

4.2.27 Trigger Source Name (IVI-COM & IVI.NET only)

Data Type Access Applies To Coercion High Level Functions

ViString RO TriggerSource None N/A

.NET Property Name

Trigger.Sources[].Name

This property is inherited from IIviRepeatedCapabilityIdentification .

COM Property Name

Trigger.Sources.Name([in] LONG Index)

C Constant Name

N/A

(Use the GetTriggerSourceName function.)

Description

This property returns the physical trigger source identifier that corresponds to the index that the user

specifies. If the driver defines a qualified trigger source name, this property returns the qualified name.

In COM, the index is one-based. In .NET, the index is zero-based.

For COM, if the value that the user passes for the Index parameter is less than one or greater than the value

of the Trigger Source Count attribute, the property returns an empty string in the Name parameter and

returns the Invalid Value error.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 71 IVI-4.15: IviDigitizer Class Specification

4.2.28 Trigger Type

Data Type Access Applies To Coercion High Level Functions

ViInt32 R/W TriggerSource None N/A

.NET Property Name

Trigger.Sources[].Type

.NET Enumeration Name

TriggerType

COM Property Name

Trigger.Sources.Item(). Type

COM Enumeration Name

IviDigitizerTriggerTypeEnum

C Constant Name

IVIDIGITIZER_ATTR_TRIGGER_TYPE

Description

The kind of event that triggers the digitizer.

Defined Values

Name Description

 Language Identifier

Trigger Edge Configures the digitizer for edge triggering. An edge trigger occurs when the trigger

signal specified with the Trigger Source attribute passes the voltage threshold

specified with the Trigger Level attribute and has the slope specified with the

Trigger Slope attribute.

 .NET Trigger Type . Edge

C IVIDIGITIZER_VAL_EDGE_TRIGGER

COM IviDigitizerTriggerEdge

Trigger Width Configures the digitizer for width triggering. Use the IviDigitizerWidthTrigger

extension properties and methods to configure the trigger.

 .NET Trigger Type . Width

C IVIDIGITIZER_VAL_WIDTH_TRIGGER

COM IviDigitizerTriggerWidth

Trigger Runt Configures the digitizer for runt triggering. Use the IviDigitizerRuntTrigger

extension properties and methods to configure the trigger.

 .NET Trigger Type . Runt

IVI-4.15: IviDigitizer Class Specification 72 IVI Foundation

C IVIDIGITIZER_VAL_RUNT_TRIGGER

COM IviDigitizerTriggerRunt

Trigger Glitch Configures the digitizer for glitch triggering. Use the IviDigitizerGlitchTrigger

extension properties and methods to configure the trigger.

 .NET Trigger Type . Glitch

C IVIDIGITIZER_VAL_GLITCH_TRIGGER

COM IviDigitizerTriggerGlitch

Trigger TV Configures the digitizer for triggering on TV signals. Use the IviDigitizerTVTrigger

extension properties and methods to configure the trigger.

 .NET Trigger Type . TV

C IVIDIGITIZER_VAL_TV_TRIGGER

COM IviDigitizerTriggerTV

Trigger Window Configures the digitizer for window triggering. Use the IviDigitizerWindowTrigger

extension properties and methods to configure the trigger.

 .NET Trigger Type . Window

C IVIDIGITIZER_VAL_WINDOW_TRIGGER

COM IviDigitizerTriggerWindow

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 73 IVI-4.15: IviDigitizer Class Specification

4.2.29 Vertical Coupling

Data Type Access Applies To Coercion High Level Functions

ViInt32 R/W Channel None Configure Channel

.NET Property Name

Channels[].Coupling

.NET Enumeration Name

VerticalCoupling

COM Property Name

Channels.Item().Coupling

COM Enumeration Name

IviDigitizerVerticalCouplingEnum

C Constant Name

IVIDIGITIZER_ATTR_VERTICAL_COUPLING

Description

Specifies how the digitizer couples the input signal for the channel.

Defined Values

Name Description

 Language Identifier

AC The digitizer AC couples the input signal.

 .NET VerticalCoupling. AC

C IVIDIGITIZER_VAL_VERTICAL_COUPLING_AC

COM IviDigitizerVerticalCouplingAC

DC The digitizer DC couples the input signal.

 .NET VerticalCoupling. DC

C IVIDIGITIZER_VAL_VERTICAL_COUPLING_DC

COM IviDigitizerVerticalCouplingDC

Gnd The digitizer couples the channel to the ground.

 .NET VerticalCoupling. Grou nd

C IVIDIGITIZER_VAL_VERTICAL_COUPLING_GND

COM IviDigitizerVerticalCouplingGnd

IVI-4.15: IviDigitizer Class Specification 74 IVI Foundation

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 75 IVI-4.15: IviDigitizer Class Specification

4.2.30 Vertical Offset

Data Type Access Applies To Coercion High Level Functions

ViReal64 R/W Channel None Configure Channel

.NET Property Name

Channels[].Offset

COM Property Name

Channels.Item().Offset

C Constant Name

IVIDIGITIZER_ATTR_VERTICAL_OFFSET

Description

The location of the center of the range that you specify with the Range attribute. The units are Volts, with

respect to ground. For example, to acquire a sine wave spanning 0.0 to 10.0 volts, set Offset to 5.0 volts.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 76 IVI Foundation

4.2.31 Vertical Range

Data Type Access Applies To Coercion High Level Functions

ViReal64 R/W Channel Up Configure Channel

.NET Property Name

Channels[].Range

COM Property Name

Channels.Item().Range

C Constant Name

IVIDIGITIZER_ATTR_VERTICAL_RANGE

Description

The absolute value of the input range the digitizer can acquire for the channel. The units are Volts. For

example, to acquire a sine wave spanning -5.0 to 5.0 volts, set Range to 10.0 volts.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 77 IVI-4.15: IviDigitizer Class Specification

4.3 IviDigitizerBase Functions

The IviDigitizerBase capability group defines the following functions:

¶ Abort

¶ Configure Acquisition Record

¶ Configure Active Trigger Source (IVI -C only)

¶ Configure Channel

¶ Configure Edge Trigger Source

¶ Create Waveform (IVI.NET Only)

¶ Fetch Waveform Int16

¶ Fetch Waveform Int32

¶ Fetch Waveform Int8

¶ Fetch Waveform Real64

¶ Get Channel Name (IVI-C only)

¶ Get Trigger Source Name (IVI-C only)

¶ Initiate Acquisition

¶ Is Idle (IVI -C only)

¶ Is Measuring (IVI -C only)

¶ Is Waiting For Arm (IVI -C only)

¶ Is Waiting For Trigger (IVI -C only)

¶ QueryMinWaveformMemory

¶ Read Waveform Int16

¶ Read Waveform Int32

¶ Read Waveform Int8

¶ Read Waveform Real64

¶ Wait For Acquisition Complete

This section describes the behavior and requirements of each function.

IVI-4.15: IviDigitizer Class Specification 78 IVI Foundation

4.3.1 Abort

Description

Aborts an acquisition and returns the digitizer to the Idle state.

.NET Method Prototype

void Acquisition.Abort ();

COM Method Prototype

HRESULT Acquisition.Abort ();

C Prototype

ViStatus IviDigitizer_Abort (ViSession Vi);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

IVI Foundation 79 IVI-4.15: IviDigitizer Class Specification

4.3.2 Configure Acquisition Record

Description

This function configures the most commonly configured attributes of the digitizer acquisition sub-system.

These attributes are the samples per record, the number of records to acquire, and the sample rate.

.NET Method Prototype

void Acquisition.ConfigureAcquisition (Int64 numberOfRecordsToAcquire,

 Int64 recordSize,

 Double sampleRate);

COM Method Prototype

HRESULT Acquisition.Configure Acquisi tion ([in] long NumRecords ToAcquire ,

 [in] long RecordSize,

 [in] double SampleRate);

C Prototype

ViStatus IviDigitizer_ConfigureAcquisition (ViSession Vi,

 ViInt64 NumRecords ToAcquire ,

 ViInt64 RecordSize,

 ViReal64 SampleRate);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

NumRecords ToAcquire

(C/COM)

numberOfRecordsToAcquire

(.NET)

Specifies the number of records in the acquisition.

This value sets the Num Records To Acquire

attribute.

ViInt64

RecordSize Specifies the number of samples in each record.

This value sets the Record Size attribute.

ViInt64

SampleRate Specifies the sample rate in samples per second.

This value sets the Sample Rate attribute.

ViReal64

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

IVI-4.15: IviDigitizer Class Specification 80 IVI Foundation

4.3.3 Configure Active Trigger Source (IVI-C Only)

Description

This function sets the Active Trigger Source attribute, which specifies the source the digitizer monitors for

the trigger event. The value specified as parameter must be one of the valid repeated capability names for

the TriggerSource repeated capability.

If an IVI driver supports a trigger source and the trigger source is listed in IVI-3.3 Cross Class Capabilities

Specification, Section 3, then the IVI driver shall accept the standard string for that trigger source. The

source parameter is case insensitive, but case preserving. That is, the setting is case insensitive but when

reading it back the programmed case is returned. IVI specific drivers may define new trigger source strings

for trigger sources that are not defined by IVI-3.3 Cross Class Capabilities Specification if needed.

The Active Trigger Source attribute only affects instrument behavior when either the

IviDigitizerMultiTrigger extension group is not supported or the Trigger Source Operator is set to None.

.NET Method Prototype

N/A

(Use the Trigger.ActiveSource property)

COM Method Prototype

N/A

(Use the Trigger .ActiveSource property)

C Prototype

ViStatus IviDigitizer_ConfigureActiveTriggerSource (ViSession Vi,

 Vi String Source);

Parameters

Inputs Description Base Type

Vi Instrument handle ViSession

Source Specifies the trigger source that is to be set as the

Active Trigger Source.
ViString

Return Values (C)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI Foundation 81 IVI-4.15: IviDigitizer Class Specification

4.3.4 Configure Channel

Description

This function configures the most commonly configured attributes of the digitizer channel sub-system.

These attributes are the range, offset, coupling, and whether the channel is enabled.

.NET Method Prototype

void Channels[].Configure (Double range,

 Double offset,

 VerticalCoupling coupling,

 Boolean enabled);

COM Method Prototype

HRESULT Channels.Item().Configure ([in] double Range,

 [in] double Offset,

 [in] IviDigitizerVerticalCouplingEnum Coupling,

 [in] VARIANT_BOOL Enabled);

C Prototype

ViStat us IviDigitizer_ConfigureChannel (ViSession Vi,

 ViConstString ChannelName,

 ViReal64 Range,

 ViReal64 Offset,

 ViInt32 Coupling,

 ViBoolean Enabled);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

ChannelName Name of the digitizer channel to configure. ViConstString

Range Specifies the vertical range. This value sets the Vertical

Range attribute.

ViReal64

Offset Specifies the vertical offset. This value sets the Vertical

Offset attribute.

ViReal64

Coupling Specifies how to couple the input signal. This value sets the

Vertical Coupling attribute.

ViInt32

Enabled Specifies if the channel is enabled for acquisition. This value

sets the Channel Enabled attribute.

ViBoolean

Defined Values for the Coupling Parameter

Name Description

 Language Identifier

AC The digitizer AC couples the input signal.

 .NET VerticalCoupling. AC

C IVIDIGITIZER_VAL_VERTICAL_COUPLING_AC

COM IviDigitizerVerticalCouplingAC

IVI-4.15: IviDigitizer Class Specification 82 IVI Foundation

DC The digitizer DC couples the input signal.

 .NET VerticalCoupling. DC

C IVIDIGITIZER_VAL_VERTICAL_COUPLING_DC

COM IviDigitizerVerticalCouplingDC

Gnd The digitizer couples the channel to the ground.

 .NET VerticalCoupling. Ground

C IVIDIGITIZER_VAL_VERTICAL_COUPLING_GND

COM IviDigitizerVerticalCouplingGnd

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

IVI Foundation 83 IVI-4.15: IviDigitizer Class Specification

4.3.5 Configure Edge Trigger Source

Description

This function sets the edge triggering attributes. An edge trigger occurs when the trigger signal that the

end-user specifies with the Source parameter passes through the voltage threshold that the end-user

specifies with the level parameter and has the slope that the end-user specifies with the Slope parameter.

This function affects instrument behavior only if the Trigger Type is Edge Trigger. Set the Trigger Type

and Trigger Coupling before calling this function. If the trigger source is one of the analog input channels,

an application program should configure the vertical range, vertical coupling, and the maximum input

frequency before calling this function.

.NET Method Prototype

void Trigger.Sources[].Edge.Configure (Double level,

 Slope slope);

COM Method Prototype

HRESULT Trigger.Sources.Item(). Edge.Configure ([in] double Level,

 [in] IviDigitizerTriggerSlopeEnum Slope);

C Prototype

ViStatus IviDigitizer_ConfigureEdgeTriggerSource (ViSession Vi,

 ViConstString Source,

 ViReal64 Level,

 ViInt32 Slope);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

Source Specifies the trigger source that is to be configured. ViString

Level Specifies the trigger level. This value sets the Trigger Level

attribute.

ViReal64

Slope Specifies the trigger slope. This value sets the Trigger Slope

attribute.

Vi Int32

IVI-4.15: IviDigitizer Class Specification 84 IVI Foundation

Defined Values for the Slope Parameter

Name Description

 Language Identifier

Negative A negative (falling) edge passing through the trigger level triggers the digitizer.

 .NET Slope. Negative

C IVIDIGITIZER_VAL_TRIGGER_SLOPE_NEGATIVE

COM IviDigitizerTriggerSlopeNegative

Positive A positive (rising) edge passing through the trigger level triggers the digitizer.

 .NET Slope. Positive

C IVIDIGITIZER_VAL_TRIGGER_SLOPE_POSITIVE

COM IviDigitizerTriggerSlopePositive

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

IVI Foundation 85 IVI-4.15: IviDigitizer Class Specification

4.3.6 Create Waveform (IVI.NET Only)

Description

This function creates a waveform object and shall allocate the necessary memory to transfer a waveform

from the instrument to the host.

If size is zero, the driver shall allocate the waveform memory with a size based on the current driver

configuration.

.NET Method Prototype

IWaveform<Double> Acquisition.CreateWaveformDouble (Int 64 size);

IWaveform<Int32> Acquisition.CreateWaveformInt32 (Int 64 size);

IWaveform<Int16> Acquisition.CreateWaveformInt16 (Int 64 size);

IWaveform< SByte> Acquisition.CreateWaveform SByte (Int 64 size);

COM Method Prototype

N/A

C Prototype

N/A

Parameters

Inputs Description Base Type

size The number of points in the waveform array. Int 64

Outputs Description Base Type

Return value

(.NET)
The newly allocated waveform. Ivi.Driver.IWaveform<T>

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

IVI-4.15: IviDigitizer Class Specification 86 IVI Foundation

4.3.7 Fetch Waveform Int16

Description

This function returns the waveform the digitizer acquired for the specified channel. The waveform is from a

previously initiated acquisition.

You use the Initiate Acquisition function to start an acquisition on the channels that the end-user configures

with the Configure Channel function. The digitizer acquires waveforms on the concurrently enabled

channels. If the channel is not enabled for the acquisition, this function returns the Channel Not Enabled

error.

You can use the Acquisition Status function to determine when the acquisition is complete. You must call

the FetchWaveformInt16 function separately for each enabled channel to obtain the waveforms.

Alternatively, you can use the Wait For Acquisition Complete function to block the calling program until

the acquisition is finished.

You can call the Read Waveform Int16 function instead of the Initiate Acquisition function. The Read

Waveform Int16 function starts an acquisition on all enabled channels, waits for the acquisition to

complete, and returns the waveform (as well as various waveform parameters) for the specified channel.

You call this function to obtain the waveforms for each of the remaining channels.

The behavior is different for IVI-C/IVI -COM and IVI.NET as follows:

IVI -C/IVI-COM: After this function executes, each element in the WaveformArray parameter is

an unscaled value directly from the digitizerôs analog-to-digital converter (ADC).

IVI.NET: For .NET the return value of IWaveform<Int16> is a waveform object. Refer to Section

4, Common Properties and Methods of Waveform and Spectrum Interfaces, and Section 5,

IWaveform<T> Interface, of IVI-3.18: IVI.NET Utility Classes and Interfaces Specification, for

the definition of the IWaveform object and information regarding its use. In particular, refer to

Section 4.2, How to use Waveform and Spectrum Types, in IVI-3.18: IVI.NET Utility Classes and

Interfaces Specification, for more information about how to implement these methods.

For IVI.NET, the waveform memory may be allocated before calling this method, or during the

call to this method. To allocate memory before calling this method, create a waveform object

using the Create Waveform method and set the waveform parameter to that waveform. To allocate

memory during the call to this method, one of the following approaches may be used:

¶ Set the waveform parameter to (IWaveform<Int16>)null . Note that this is critically

different than setting waveforms to null , which generates a build error. Casting null to

IWaveform<Int16> provides the strong typing necessary to select the correct IVI.NET

overload of the Fetch Waveform method. The method will allocate a new waveform with an

appropriate extent for the current configuration of the driver. The new waveform is returned

to the client. The driver may allocate more memory than necessary for the data array if the

larger size has the potential to provide some present or future efficiency benefit, that is, the

Capacity may exceed the ValidPointCount.

¶ Set the waveform parameter to an instance of the waveform object with zero sized data. This

permits the client to choose the concrete class that implements the Waveform but defer to the

driver for the size and creation of the data array. This may result in sub-optimal performance

if the waveform/spectrum was not of the class that the driver prefers. If the data array is not of

a supported size or type, the driver shall throw the Invalid Waveform Data Type or Invalid

Spectrum Data Type exception. The driver is permitted to allocate new memory or use

memory from an existing source for the data array.

IVI Foundation 87 IVI-4.15: IviDigitizer Class Specification

This function does not check the instrument status. Typically, the end-user calls this function only in a

sequence of calls to other low-level driver functions. The sequence performs one operation. The end-user

uses the low-level functions to optimize one or more aspects of interaction with the instrument. Call the

Error Query function at the conclusion of the sequence to check the instrument status.

.NET Method Prototype

IWaveform<Int16> Channels[].Measurement.FetchWaveform (

 IWaveform<Int16> waveform);

COM Method Prototype

HRESULT Channels.Item().Measurement.FetchWaveformInt16 (

 [in, out] SAFEARRAY(short)* WaveformArray,

 [in, out] __int64 * ActualPoints,

 [in, out] __int64 * FirstValidPoint,

 [in, out] double* InitialXOffset,

 [in, out] double* InitialXTimeSeconds,

 [in, out] double* InitialXTimeFra ction ,

 [in, out] double* XIncrement ,

 [in, out] double* ScaleFactor,

 [in, out] double* ScaleOffset);

C Prototype

ViStatus IviDigitizer_FetchWavefo rmInt16 (ViSession Vi,

 ViConstString ChannelName,

 ViInt64 WaveformArraySize,

 ViInt16 WaveformArray[],

 ViInt64 * ActualPoints,

 ViInt64 * FirstValidPoint,

 ViReal64 * InitialXOffset,

 ViReal64 * InitialXTimeSeconds,

 ViReal64 * InitialXTimeFraction ,

 ViReal64* XIncrement ,

 ViReal64* ScaleFactor,

 ViReal64* ScaleOffset);

Parameters

Inputs Description Base Type

Vi (C) Instrument handle. ViSession

ChannelName (C) Name of the channel from which to retrieve the data. ViConstString

WaveformArraySize (C) Specifies the allocated size of the WaveformArray

buffer, in number of data points. If this value is

smaller than the total number of points to be

retrieved, the driver will fill the waveform buffer as

fully as possible and return the actual number of

points retrieved in the ActualPoints parameter. In

IVI -COM it is the driver that allocates the memory

buffer, unless a non-NULL SAFEARRAY is passed.

ViInt64

IVI-4.15: IviDigitizer Class Specification 88 IVI Foundation

waveform (.NET) The waveform object into which the measurement

data is stored. The waveform memory may be

allocated before calling this method, or during the

call to this method. To allocate memory before

calling this method, create a waveform object using

the Create Waveform method and set the waveform

parameter to that waveform object. To allocate

memory during the call to this method, set the

waveform parameter to

(IWaveform< Int16 >)null . Note that this is

critically different than setting waveform to null ,

which generates a build error. The method will also

allocate memory during the call if the waveform

parameter is set to a waveform object with zero

sized data.

IviDriver.

IWaveform<Int16>

Outputs Description Base Type

WaveformArray (C/COM) Buffer into which the acquired waveform is stored.

For IVI-C, this buffer is always user allocated. For

IVI -COM, this buffer may either be user allocated or

driver allocated. To have the driver allocate the

buffer, the user passes in a valid pointer to a NULL

SAFEARRAY. Note that this is critically different

than passing in a NULL pointer, which generates an

error. When IVI-COM users pass in a pointer to a

non-NULL SAFEARRAY, the driver fills the user-

allocated array in the same fashion as with IVI-C.

ViInt16[]

ActualPoints (C/ COM) Indicates how many data points were actually

retrieved from the instrument.

ViInt64

FirstValidPoint (C/COM) Indicates the index of the first valid data point in the

output Data array. This value will often be zero.

However, some digitizer hardware designs transfer

data most efficiently when the data is aligned with

specific memory address boundaries. In those cases,

the hardware may return a few invalid data points at

the beginning of a record. This eliminates the need to

shift the data during the transfer, ensuring maximum

data transfer rates.

ViInt64

InitialXOffset (C/COM) The time in relation to the Trigger Event of the first

point in the waveform in seconds. Negative values

mean that the first point in the waveform array was

acquired before the trigger event.

ViReal64

InitialXTimeSeconds

(C/COM)
Specifies the seconds portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

IVI Foundation 89 IVI-4.15: IviDigitizer Class Specification

InitialXTimeFraction

(C/COM)
Specifies the fractional portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

XIncrement (C/COM) The time between points in the acquired waveform in

seconds.

ViReal64

ScaleFactor (C/COM) Scaling factor for the waveform data. ViReal64

ScaleOffset (C/COM) Scaling offset for the waveform data. ViReal64

Return Value (.NET) A waveform object containing the measurement

data.

Ivi.Driver.

IWaveform<Int16>

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return these additional class-defined status codes:

¶ Channel Not Enabled

¶ Incompatible Fetch

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

This method can also throw these additional class-defined exceptions:

¶ Channel Not Enabled

¶ Incompatible Fetch

IVI-4.15: IviDigitizer Class Specification 90 IVI Foundation

4.3.8 Fetch Waveform Int32

Description

This function operates identically to the Fetch Waveform Int16, with the only difference being the data type

of the returned waveform array. Please see the definition of that function for details.

.NET Method Prototype

IWaveform<Int32> Channels[].Measurement.FetchWaveform (

 IWaveform<Int32> waveform);

COM Method Prototype

HRESULT Channels.Item().Measurement.FetchWaveformInt 32 (

 [in, out] SAFEARRAY(long)* Wa veformArray,

 [in, out] __int64 * ActualPoints,

 [in, out] __int64 * FirstValidPoint,

 [in, out] double* InitialXOffset,

 [in, out] double* InitialXTimeSeconds,

 [in, out] double* InitialXTimeFraction,

 [in, out] double* XIncrement,

 [in, out] double* ScaleFac tor,

 [in, out] double* ScaleOffset);

C Prototype

ViStatus IviDigitizer_FetchWaveformInt 32 (ViSession Vi,

 ViConstString ChannelName,

 ViI nt64 WaveformArraySize,

 ViInt 32 WaveformArray[],

 ViInt64* ActualPoints,

 ViInt64* FirstValidPoint,

 ViReal64* InitialXOffset,

 ViReal64* InitialXTimeSeconds,

 ViReal64* InitialXTimeFraction,

 ViReal64* XIncrement,

 ViReal64* ScaleFactor,

 ViReal64* ScaleOffset);

Parameters

Inputs Description Base Type

Vi (C) Instrument handle. ViSession

ChannelName (C) Name of the channel from which to retrieve the data. ViConstString

WaveformArraySize (C) Specifies the allocated size of the WaveformArray

buffer, in number of data points. If this value is

smaller than the total number of points to be

retrieved, the driver will fill the waveform buffer as

fully as possible and return the actual number of

points retrieved in the ActualPoints parameter. In

IVI -COM it is the driver that allocates the memory

buffer, unless a non-NULL SAFEARRAY is passed.

ViInt64

IVI Foundation 91 IVI-4.15: IviDigitizer Class Specification

waveform (.NET) The waveform object into which the measurement

data is stored. The waveform memory may be

allocated before calling this method, or during the

call to this method. To allocate memory before

calling this method, create a waveform object using

the Create Waveform method and set the waveform

parameter to that waveform object. To allocate

memory during the call to this method, set the

waveform parameter to

(IWaveform< Int32 >)null . Note that this is

critically different than setting waveform to null ,

which generates a build error. The method will also

allocate memory during the call if the waveform

parameter is set to a waveform object with zero

sized data.

IviDriver.

IWaveform<Int32>

Outputs Description Base Type

WaveformArray (C/COM) Buffer into which the acquired waveform is stored.

For IVI-C, this buffer is always user allocated. For

IVI -COM, this buffer may either be user allocated or

driver allocated. To have the driver allocate the

buffer, the user passes in a valid pointer to a NULL

SAFEARRAY. Note that this is critically different

than passing in a NULL pointer, which generates an

error. When IVI-COM users pass in a pointer to a

non-NULL SAFEARRAY, the driver fills the user-

allocated array in the same fashion as with IVI-C.

ViInt32[]

ActualPoints (C/COM) Indicates how many data points were actually

retrieved from the instrument.

ViInt64

FirstValidPoint (C/COM) Indicates the index of the first valid data point in the

output Data array. This value will often be zero.

However, some digitizer hardware designs transfer

data most efficiently when the data is aligned with

specific memory address boundaries. In those cases,

the hardware may return a few invalid data points at

the beginning of a record. This eliminates the need to

shift the data during the transfer, ensuring maximum

data transfer rates.

ViInt64

InitialXOffset (C/COM) The time in relation to the Trigger Event of the first

point in the waveform in seconds. Negative values

mean that the first point in the waveform array was

acquired before the trigger event.

ViReal64

InitialXTimeSeconds

(C/COM)
Specifies the seconds portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

IVI-4.15: IviDigitizer Class Specification 92 IVI Foundation

InitialXTimeFraction

(C/COM)
Specifies the fractional portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

XIncrement (C/COM) The time between points in the acquired waveform in

seconds.

ViReal64

ScaleFactor (C/COM) Scaling factor for the waveform data. ViReal64

ScaleOffset (C/COM) Scaling offset for the waveform data. ViReal64

Return Value (.NET) A waveform object containing the measurement

data.

Ivi.Driver.

IWaveform<Int32>

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return these additional class-defined status codes:

¶ Channel Not Enabled

¶ Incompatible Fetch

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

This method can also throw these additional class-defined exceptions:

¶ Channel Not Enabled

¶ Incompatible Fetch

IVI Foundation 93 IVI-4.15: IviDigitizer Class Specification

4.3.9 Fetch Waveform Int8

Description

This function operates identically to the Fetch Waveform Int16, with the only difference being the data type

of the returned waveform array. Please see the definition of that function for details.

.NET Method Prototype

IWaveform< SByte> Chan nels[].Measurement.FetchWaveform (

 IWaveform< SByte> waveform);

COM Method Prototype

HRESULT Channels.Item().Measurement.FetchWaveformInt 8 (

 [in, out] SAFEARRAY(BYTE)* Wavefor mArray,

 [in, out] __int64 * ActualPoints,

 [in, out] __int64 * FirstValidPoint,

 [in, out] double* InitialXOffset,

 [in, out] double* InitialXTimeSeconds,

 [in, out] double* InitialXTimeFraction,

 [in, out] double* XIncrement,

 [in, out] double* ScaleFactor,

 [in, out] double* ScaleOffset);

C Prototype

ViStatus IviDigitizer_FetchWaveformInt 8 (ViSession Vi,

 ViConstString ChannelName,

 ViInt64 WaveformArraySize,

 ViInt 8 WaveformArray[],

 ViInt64* Actua lPoints,

 ViInt64* FirstValidPoint,

 ViReal64* InitialXOffset,

 ViReal64* InitialXTimeSeconds,

 ViReal64* InitialXTimeFraction,

 ViReal64* XIncrement,

 ViReal64* ScaleFactor,

 ViReal64* ScaleOffset);

Parameters

Inputs Description Base Type

Vi (C) Instrument handle. ViSession

ChannelName (C) Name of the channel from which to retrieve the data. ViConstString

WaveformArraySize (C) Specifies the allocated size of the WaveformArray

buffer, in number of data points. If this value is

smaller than the total number of points to be

retrieved, the driver will fill the waveform buffer as

fully as possible and return the actual number of

points retrieved in the ActualPoints parameter. In

IVI -COM it is the driver that allocates the memory

buffer, unless a non-NULL SAFEARRAY is passed.

ViInt64

IVI-4.15: IviDigitizer Class Specification 94 IVI Foundation

waveform (.NET) The waveform object into which the measurement

data is stored. The waveform memory may be

allocated before calling this method, or during the

call to this method. To allocate memory before

calling this method, create a waveform object using

the Create Waveform method and set the waveform

parameter to that waveform object. To allocate

memory during the call to this method, set the

waveform parameter to

(IWaveform< SByte >)null . Note that this is

critically different than setting waveform to null ,

which generates a build error. The method will also

allocate memory during the call if the waveform

parameter is set to a waveform object with zero

sized data.

IviDriver.

IWaveform< SByte>

Outputs Description Base Type

WaveformArray (C/COM) Buffer into which the acquired waveform is stored.

For IVI-C, this buffer is always user allocated. For

IVI -COM, this buffer may either be user allocated or

driver allocated. To have the driver allocate the

buffer, the user passes in a valid pointer to a NULL

SAFEARRAY. Note that this is critically different

than passing in a NULL pointer, which generates an

error. When IVI-COM users pass in a pointer to a

non-NULL SAFEARRAY, the driver fills the user-

allocated array in the same fashion as with IVI-C.

ViInt8[]

ActualPoints (C/COM) Indicates how many data points were actually

retrieved from the instrument.

ViInt64

FirstValidPoint (C/COM) Indicates the index of the first valid data point in the

output Data array. This value will often be zero.

However, some digitizer hardware designs transfer

data most efficiently when the data is aligned with

specific memory address boundaries. In those cases,

the hardware may return a few invalid data points at

the beginning of a record. This eliminates the need to

shift the data during the transfer, ensuring maximum

data transfer rates.

ViInt64

InitialXOffset (C/COM) The time in relation to the Trigger Event of the first

point in the waveform in seconds. Negative values

mean that the first point in the waveform array was

acquired before the trigger event.

ViReal64

InitialXTimeSeconds

(C/COM)
Specifies the seconds portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

IVI Foundation 95 IVI-4.15: IviDigitizer Class Specification

InitialXTimeFraction

(C/COM)
Specifies the fractional portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

XIncrement (C/COM) The time between points in the acquired waveform in

seconds.

ViReal64

ScaleFactor (C/COM) Scaling factor for the waveform data. ViReal64

ScaleOffset (C/COM) Scaling offset for the waveform data. ViReal64

Return Value (.NET) A waveform object containing the measurement

data.

Ivi.Driver.

IWaveform< SByte>

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return these additional class-defined status codes:

¶ Channel Not Enabled

¶ Incompatible Fetch

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

This method can also throw these additional class-defined exceptions:

¶ Channel Not Enabled

¶ Incompatible Fetch

IVI-4.15: IviDigitizer Class Specification 96 IVI Foundation

4.3.10 Fetch Waveform Real64

Description

This function operates identically to the Fetch Waveform Int16, with the only difference being the data type

of the returned waveform array. Please see the definition of that function for details. Note that for this

function, after completion each element in the WaveformArray parameter is the actual sampled voltage in

Volts.

.NET Method Prototype

IWaveform<Double> Channels[].Measurement.FetchWaveform (

 IWaveform<Double> waveform);

COM Method Prototype

HRESULT Channels.Item().Measurement.FetchWaveform Real64 (

 [in, out] SAFEARRAY(double)* WaveformArray,

 [in, out] __int64 * ActualPoints,

 [in, out] __int64 * FirstValidPoint,

 [in, out] double* InitialXOffset,

 [in, out] double* InitialXTimeSeconds,

 [i n, out] double* InitialXTimeFraction,

 [in, out] double* XIncrement);

C Prototype

ViStatus IviDigitizer_FetchWaveform Real64 (ViSession Vi,

 ViConstString ChannelName,

 ViInt64 WaveformArraySize,

 Vi Real64 WaveformArray[],

 ViInt64* ActualPoints,

 ViInt64* FirstValidP oint,

 ViReal64* InitialXOffset,

 ViReal64* InitialXTimeSeconds,

 ViReal64* InitialXTimeFraction,

 ViReal64* XIncrement);

Parameters

Inputs Description Base Type

Vi (C) Instrument handle. ViSession

ChannelName (C) Name of the channel from which to retrieve the data. ViConstString

WaveformArraySize (C) Specifies the allocated size of the WaveformArray

buffer, in number of data points. If this value is

smaller than the total number of points to be

retrieved, the driver will fill the waveform buffer as

fully as possible and return the actual number of

points retrieved in the ActualPoints parameter. In

IVI -COM it is the driver that allocates the memory

buffer, unless a non-NULL SAFEARRAY is passed.

ViInt64

IVI Foundation 97 IVI-4.15: IviDigitizer Class Specification

waveform (.NET) The waveform object into which the measurement

data is stored. The waveform memory may be

allocated before calling this method, or during the

call to this method. To allocate memory before

calling this method, create a waveform object using

the Create Waveform method and set the waveform

parameter to that waveform object. To allocate

memory during the call to this method, set the

waveform parameter to

(IWaveform< Double >)null . Note that this is

critically different than setting waveform to null ,

which generates a build error. The method will also

allocate memory during the call if the waveform

parameter is set to a waveform object with zero

sized data.

IviDriver.

IWaveform<Double>

Outputs Description Base Type

WaveformArray (C/COM) Buffer into which the acquired waveform is stored.

For IVI-C, this buffer is always user allocated. For

IVI -COM, this buffer may either be user allocated or

driver allocated. To have the driver allocate the

buffer, the user passes in a valid pointer to a NULL

SAFEARRAY. Note that this is critically different

than passing in a NULL pointer, which generates an

error. When IVI-COM users pass in a pointer to a

non-NULL SAFEARRAY, the driver fills the user-

allocated array in the same fashion as with IVI-C.

ViReal64[]

Actua lPoints (C/COM) Indicates how many data points were actually

retrieved from the instrument.

ViInt64

FirstValidPoint (C/COM) Indicates the index of the first valid data point in the

output Data array. This value will often be zero.

However, some digitizer hardware designs transfer

data most efficiently when the data is aligned with

specific memory address boundaries. In those cases,

the hardware may return a few invalid data points at

the beginning of a record. This eliminates the need to

shift the data during the transfer, ensuring maximum

data transfer rates.

ViInt64

InitialXOffset (C/COM) The time in relation to the Trigger Event of the first

point in the waveform in seconds. Negative values

mean that the first point in the waveform array was

acquired before the trigger event.

ViReal64

InitialXTimeSeconds

(C/COM)
Specifies the seconds portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

IVI-4.15: IviDigitizer Class Specification 98 IVI Foundation

InitialXTimeFraction

(C/COM)
Specifies the fractional portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

XIncrement (C/COM) The time between points in the acquired waveform in

seconds.

ViReal64

Return Value (.NET) A waveform object containing the measurement

data.

Ivi.Driver.

IWaveform<Double>

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return these additional class-defined status codes:

¶ Channel Not Enabled

¶ Incompatible Fetch

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

This method can also throw these additional class-defined exceptions:

¶ Channel Not Enabled

¶ Incompatible Fetch

IVI Foundation 99 IVI-4.15: IviDigitizer Class Specification

4.3.11 Get Channel Name (IVI-C Only)

Description

This function returns the specific driver defined channel name that corresponds to the one-based index that

the user specifies. If the driver defines a qualified channel name, this function returns the qualified name. If

the value that the user passes for the Index parameter is less than one or greater than the value of the

Channel Count attribute, the function returns an empty string in the Name parameter and returns the Invalid

Value error.

.NET Method Prototype

N/A

(Use the Channels[] .Name property)

COM Method Prototype

N/A

(Use the Channels .Item().Name property)

C Prototype

ViStatus IviDigitizer_Get Channel Name (ViSession Vi,

 ViInt32 Channel Index,

 ViInt32 Channel NameBufferSize,

 ViChar Channel Name[]);

Parameters

Inputs Description Base Type

Vi Instrument handle ViSession

Channel Index A one-based index that defines which name to return. ViInt32

Channel NameBufferSize The number of bytes in the ViChar array that the user

specifies for the SourceName parameter.

ViInt32

Outputs Description Base Type

Channel Name A user-allocated (for IVI-C) or driver-allocated (for

IVI -COM) buffer into which the driver stores the

channel name.

The caller may pass VI_NULL for this parameter if

the ChannelName BufferSize parameter is 0.

ViChar[]

Return Values (C)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI-4.15: IviDigitizer Class Specification 100 IVI Foundation

4.3.12 Get Trigger Source Name (IVI-C Only)

Description

This function returns the specific driver defined trigger source name that corresponds to the one-based

index that the user specifies. If the driver defines a qualified trigger source name, this function returns the

qualified name. If the value that the user passes for the Index parameter is less than one or greater than the

value of the Trigger Source Count attribute, the function returns an empty string in the Name parameter and

returns the Invalid Value error.

.NET Method Prototype

N/A

(Use the Trigger.Sources[] .Name property)

COM Method Prototype

N/A

(Use the Trigger.Sources .Item().Name property)

C Prototype

ViStatus Ivi Digitizer _GetTriggerSourceName (ViSession Vi,

 ViInt32 SourceIndex,

 ViInt32 SourceNameBufferSize,

 ViChar SourceName[]);

Parameters

Inputs Description Base Type

Vi Instrument handle ViSession

SourceIndex A one-based index that defines which name to return. ViInt32

SourceNameBufferSize The number of bytes in the ViChar array that the user

specifies for the SourceName parameter.

ViInt32

Outputs Description Base Type

SourceName A user-allocated (for IVI-C) or driver-allocated (for

IVI -COM) buffer into which the driver stores the

trigger sourcename.

The caller may pass VI_NULL for this parameter if

the SourceNameBufferSize parameter is 0.

ViChar[]

Return Values (C)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI Foundation 101 IVI-4.15: IviDigitizer Class Specification

4.3.13 Initiate Acquisition

Description

This function initiates a waveform acquisition. After calling this function, the digitizer leaves the idle state

and waits for a trigger. The digitizer acquires a waveform for each channel the end-user has enabled with

the Configure Channel function.

This function does not check the instrument status. Typically, the end-user calls this function only in a

sequence of calls to other low-level driver functions. The sequence performs one operation. The end-user

uses the low-level functions to optimize one or more aspects of interaction with the instrument. Call the

Error Query function at the conclusion of the sequence to check the instrument status.

.NET Method Prototype

void Acquisition.Initiate ();

COM Method Prototype

HRESULT Acquisition.Initiate ();

C Prototype

ViStatus IviDigitizer_InitiateAcquisition (ViSession Vi);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

IVI-4.15: IviDigitizer Class Specification 102 IVI Foundation

4.3.14 Is Idle (IVI-C Only)

Description

This function is used to determine if the digitizer is currently in the Idle state.

.NET Method Prototype

N/A

(Use the Acquistion.Status.IsIdle property)

COM Method Prototype

N/A

(Use the Acquistion.Status.IsIdle property)

C Prototype

ViStatus IviDigitizer_IsIdle (ViSession Vi,

 ViInt32* Status);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

Outputs Description Base Type

Status Returns whether the digitizer is currently in the Idle state. If

the driver cannot query the instrument to determine its state,

the driver returns the value Unknown..

ViInt32

Defined Values for the Status parameter

Name Description

 Language Identifier

True The digitizer is currently in the Idle state.

 C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_TRUE

False The digitizer is not currently in the Idle state.

 C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_FALSE

Unknown The driver cannot query the instrument to determine if the digitizer is in the Idle state.

 C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_UNKNOWN

Return Values (C)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI Foundation 103 IVI-4.15: IviDigitizer Class Specification

4.3.15 Is Measuring (IVI-C Only)

Description

This function is used to determine if the digitizer is currently in the Measuring state.

.NET Method Prototype

N/A

(Use the Acquistion.Status.IsMeasuring property)

COM Method Prototype

N/A

(Use the Acquistion.Status.IsMeasuring property)

C Prototype

ViStatus IviDigitizer_Is Measuring (ViSession Vi,

 ViInt32* Status);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

Outputs Description Base Type

Status Returns whether the digitizer is currently in the Measuring

state. If the driver cannot query the instrument to determine

its state, the driver returns the value Unknown.

ViInt32

Defined Values for the Status parameter

Name Description

 Language Identifier

True The digitizer is currently in the Measuring state.

 C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_TRUE

False The digitizer is not currently in the Measuring state.

 C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_FALSE

Unknown The driver cannot query the instrument to determine if the digitizer is in the Measuring

state.

 C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_UNKNOWN

Return Values (C)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI-4.15: IviDigitizer Class Specification 104 IVI Foundation

4.3.16 Is Waiting For Arm (IVI-C Only)

Description

This function is used to determine if the digitizer is currently in the Waiting For Arm state.

.NET Method Prototype

N/A

(Use the Acquistion.Status.IsWaitingForArm property)

COM Method Prototype

N/A

(Use the Acquistion.Status.IsWaitingForArm property)

C Prototype

ViStatus IviDigitizer_IsWaitingForArm (ViSession Vi,

 ViInt32* Status);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

Outputs Description Base Type

Status Returns whether the digitizer is currently in the Waiting For

Arm state. If the driver cannot query the instrument to

determine its state, the driver returns the value Unknown.

ViInt32

Defined Values for the Status parameter

Name Description

 Language Identifier

True The digitizer is currently in the Waiting For Arm state.

 C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_TRUE

False The digitizer is not currently in the Waiting For Arm state.

 C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_FALSE

Unknown The driver cannot query the instrument to determine if the digitizer is in the Waiting

For Arm state.

 C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_UNKNOWN

Return Values (C)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI Foundation 105 IVI-4.15: IviDigitizer Class Specification

4.3.17 Is Waiting For Trigger (IVI-C Only)

Description

This function is used to determine if the digitizer is currently in the Waiting For Trigger state.

.NET Method Prototype

N/A

(Use the Acquistion.Status.IsWaitingForTrigger property)

COM Method Prototype

N/A

(Use the Acquistion.Status.IsWaitingForTrigger property)

C Prototype

ViStatus IviDigitizer_IsWaitingForTrigger (ViSession Vi,

 ViInt32* Status);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

Outputs Description Base Type

Status Returns whether the digitizer is currently in the

WaitingForTrigger state. If the driver cannot query the

instrument to determine its state, the driver returns the value

Unknown.

ViInt32

Defined Values for the Status parameter

Name Description

 Language Identifier

True The digitizer is currently in the Waiting For Trigger state.

 C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_TRUE

False The digitizer is not currently in the Waiting For Trigger state.

 C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_FALSE

Unknown The driver cannot query the instrument to determine if the digitizer is in the Waiting For

Trigger state.

 C IVIDIGITIZER_VAL_ACQUISITION_STATUS_RESULT_UNKNOWN

Return Values (C)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI-4.15: IviDigitizer Class Specification 106 IVI Foundation

4.3.18 Query Min Waveform Memory (IVI-C and IVI-COM Only)

Description

In IVI -C, the waveform buffer memory must be allocated in advance by the user. This function is used to

determine the minimum amount of memory that is needed to fetch or read data from the digitizer with

maximum performance. The returned value includes the memory needed to handle DMA alignment issues

and any internal memory that is used by the digitizer hardware or the driver. The parameters to this

function are similar to the parameters used in Read and Fetch functions. Users should call this function

before allocating data buffer memory, and then call a Read or Fetch function with the same parameter

values.

Note that this function will return a value that can be used to allocate the optimally-sized memory buffer

for Read and Fetch calls with the same passed parameters. If the Read and Fetch calls specify fewer data

points, the data buffer will still be large enough and no performance penalty will be realized (aside from

wasted memory space). If the Read and Fetch calls specify more data points they will simply fill the

allocated memory buffer as fully as possible. Subsequent Fetch calls can then be made to retrieve the

remaining data.

In IVI -COM, the Read and Fetch calls will allocate the proper amount of memory automatically. Instead of

passing an array into the function calls, simply pass a pointer to a NULL SAFEARRAY. The driver will

then allocate sufficient memory automatically. It is also allowed to pass a pointer to a non-NULL (user

allocated, or driver allocated from a previous call) SAFEARRAY, in which case the driver shall not

reallocate memory. In this case, the user should call the QueryMinWaveform method to determine the

necessary SAFEARRAY size. For best performance, i.e. to avoid allocating the waveform buffer memory

for every Read or Fetch call, the user should let the driver allocate the SAFEARRAY buffer memory by

passing a pointer to a NULL SAFEARRAY on the first call, ensuring sufficient memory is allocated. Then

the same SAFEARRAY should be reused for subsequent calls, until acquisition parameters changes require

a larger buffer size.

.NET Method Prototype

N/A

(Use the appropriate Acquisition.CreateWaveformXX or Acquisition.CreateWaveformCollectionXX

method.)COM Method Prototype

HRESULT Acquisition. QueryMinWaveformMemory ([in] long DataWidth,

 [in] __int64 NumRecords,

 [in] __int64 OffsetWithinRecord,

 [in] __int64 NumPointsPerRecord,

 [out , retval] __int64 * NumSamples);

C Prototype

ViStatus IviDigitizer_ QueryMin Waveform Memory (ViSession Vi,

 ViInt32 DataWidth ,

 ViInt 64 NumRecords,

 ViInt64 OffsetWithinRecord,

 ViInt64 NumPointsPerRecord,

 ViInt64* NumSamples);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

IVI Foundation 107 IVI-4.15: IviDigitizer Class Specification

DataWidth Specifies the size of the sampled data that will be retrieved.

The value of this parameter must be 8, 16, 32 or 64,

corresponding to the intended Read/Fetch function.

ViInt32

NumRecords Specifies the number of records that will be read. ViInt64

OffsetWithinRecord Specifies the start index within the record from which the

data should be retrieved.

ViInt64

NumPointsPerRecord Specifies the number of data points to return. ViInt64

Outputs Description Base Type

NumSamples Returns the minimum buffer size in samples needed for a

subsequent Read or Fetch call with the same readout

parameters.

ViInt 64

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI-4.15: IviDigitizer Class Specification 108 IVI Foundation

4.3.19 Read Waveform Int16

Description

This function initiates an acquisition on the channels that the end-user configures with the Configure

Channel function. If the channel is not enabled for the acquisition, this function returns Channel Not

Enabled error. It then waits for the acquisition to complete, and returns the waveform for the channel the

end-user specifies. If the digitizer did not complete the acquisition within the time period the user specified

with the MaxTimeMilliseconds parameter, the function returns the Max Time Exceeded error.

You call the Fetch Waveform function to obtain the waveforms for each of the remaining enabled channels

without initiating another acquisition. After this function executes, each element in the WaveformArray

parameter is an unscaled value directly from the digitizerôs analog-to-digital converter (ADC).

The behavior is different for IVI-C/IVI -COM and IVI.NET as follows:

IVI -C/IVI-COM: After this function executes, each element in the WaveformArray parameter is

an unscaled value directly from the digitizerôs analog-to-digital converter (ADC).

IVI.NET: For .NET the return value of IWaveform<Int16> is a waveform object. Refer to Section

4, Common Properties and Methods of Waveform and Spectrum Interfaces, and Section 5,

IWaveform<T> Interface, of IVI-3.18: IVI.NET Utility Classes and Interfaces Specification, for

the definition of the IWaveform object and information regarding its use. In particular, refer to

Section 4.2, How to use Waveform and Spectrum Types, in IVI-3.18: IVI.NET Utility Classes and

Interfaces Specification, for more information about how to implement these methods.

For IVI.NET, the waveform memory may be allocated before calling this method, or during the

call to this method. To allocate memory before calling this method, create a waveform object

using the Create Waveform method and set the waveform parameter to that waveform. To allocate

memory during the call to this method, one of the following approaches may be used:

¶ Set the waveform parameter to (IWaveform<Int16>)null . Note that this is critically

different than setting waveforms to null , which generates a build error. Casting null to

IWaveform<Int16> provides the strong typing necessary to select the correct IVI.NET

overload of the Fetch Waveform method. The method will allocate a new waveform with an

appropriate extent for the current configuration of the driver. The new waveform is returned

to the client. The driver may allocate more memory than necessary for the data array if the

larger size has the potential to provide some present or future efficiency benefit, that is, the

Capacity may exceed the ValidPointCount.

¶ Set the waveform parameter to an instance of the waveform object with zero sized data. This

permits the client to choose the concrete class that implements the Waveform but defer to the

driver for the size and creation of the data array. This may result in sub-optimal performance

if the waveform/spectrum was not of the class that the driver prefers. If the data array is not of

a supported size or type, the driver shall throw the Invalid Waveform Data Type or Invalid

Spectrum Data Type exception. The driver is permitted to allocate new memory or use

memory from an existing source for the data array.

If the Num Records attribute set for the acquisition is not equal to 1, then the Read function shall return an

error. You must use the Initiate Acquisition function and the Fetch Multi-Record Waveform functions in

this case.

.NET Method Prototype

IWaveform<Int16> Channels[].Measurement.ReadWaveform (

 PrecisionTimeSpan maxTime,

 IWaveform<Int16> waveform);

IVI Foundation 109 IVI-4.15: IviDigitizer Class Specification

COM Method Prototype

HRESULT Channels.Item().Measurement.ReadWaveformInt16 (

 [in] long MaxT imeMilliseconds,

 [in, out] SAFEARRAY(short)* WaveformArray,

 [in, out] __int64 * ActualPoints,

 [in, out] __int64 * FirstValidPoint,

 [in, out] double* InitialXOffset,

 [in, out] double* InitialXTimeSeconds,

 [in, out] double* InitialXTimeFraction ,

 [in, out] double* XIncrement ,

 [in, out] double* ScaleFactor,

 [in, out] double* ScaleOffset);

C Prototype

ViStatus IviDigitizer_ReadWaveformInt16 (ViSes sion Vi,

 ViConstString ChannelName,

 ViInt32 MaxTimeMilliseconds,

 ViInt64 WaveformArraySize,

 ViInt16 WaveformArray[],

 ViInt 64* ActualPoints,

 ViInt 64* FirstValidPoint,

 ViReal64* InitialXOffset,

 ViReal64* InitialXTimeSeconds,

 ViReal64* InitialXTimeFraction,

 ViReal64* XIncrement,

 ViReal64* ScaleFactor,

 ViReal64* ScaleOffset);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

ChannelName Name of the channel from which to retrieve the data. ViConstString

MaxTimeMilliseconds

(C/COM)
Specifies the maximum time the end-user allows for

this method to complete in milliseconds. The values

of Immediate and Infinite, as defined in IviDigitizer

Function Parameter Value Definitions, are also

allowed.

ViInt32

maxTime (.NET) Specifies the maximum time the end-user allows for

this method to complete. The values of Immediate

and Infinite, as defined in IviDigitizer Function

Parameter Value Definitions, are also allowed.

Ivi.Driver.

Precision TimeSpan

WaveformArraySize (C) Specifies the allocated size of the WaveformArray

buffer, in number of data points. If this value is

smaller than the total number of points to be

retrieved, the driver will fill the waveform buffer as

fully as possible and return the actual number of

points retrieved in the ActualPoints parameter. In

IVI -COM, the driver will allocate the memory

buffer, unless a non-empty SAFEARRAY is passed

as input. In the latter case, the driver shall not

reallocate a memory buffer.

ViInt64

IVI-4.15: IviDigitizer Class Specification 110 IVI Foundation

waveform (.NET) The waveform object into which the measurement

data is stored. The waveform memory may be

allocated before calling this method, or during the

call to this method. To allocate memory before

calling this method, create a waveform object using

the Create Waveform method and set the waveform

parameter to that waveform object. To allocate

memory during the call to this method, set the

waveform parameter to

(IWaveform< Int16 >)null . Note that this is

critically different than setting waveform to null ,

which generates a build error. The method will also

allocate memory during the call if the waveform

parameter is set to a waveform object with zero

sized data.

IviDriver.

IWaveform<Int16 >

Outputs Description Base Type

WaveformArray (C/COM) Buffer into which the acquired waveform is stored.

For IVI-C, this buffer is always user allocated. For

IVI -COM, this buffer may either be user allocated or

driver allocated. To have the driver allocate the

buffer, the user passes in a valid pointer to a NULL

SAFEARRAY. Note that this is critically different

than passing in a NULL pointer, which generates an

error. When IVI-COM users pass in a pointer to a

non-NULL SAFEARRAY, the driver fills the user-

allocated array in the same fashion as with IVI-C.

Units for the individual array elements are unscaled

ADC values.

ViInt16[]

ActualPoints (C/COM) Indicates how many data points were actually

retrieved from the instrument.

ViInt64

FirstValidPoint (C/COM) Indicates the index of the first valid data point in the

output Data array. This value will often be zero.

However, some digitizer hardware designs transfer

data most efficiently when the data is aligned with

specific memory address boundaries. In those cases,

the hardware may return a few invalid data points at

the beginning of a record. This eliminates the need to

shift the data during the transfer, ensuring maximum

data transfer rates.

ViInt64

InitialXOffset (C/COM) The time in relation to the Trigger Event of the first

point in the waveform in seconds. Negative values

mean that the first point in the waveform array was

acquired before the trigger event.

ViReal64

InitialXTimeSeconds

(C/COM)
Specifies the seconds portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

IVI Foundation 111 IVI-4.15: IviDigitizer Class Specification

InitialXTimeFraction

(C/COM)
Specifies the fractional portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

XIncrement (C/COM) The time between points in the acquired waveform in

seconds.

ViReal64

ScaleFactor (C/COM) Scaling factor for the waveform data. ViReal64

ScaleOffset (C/COM) Scaling offset for the waveform data. ViReal64

Return Value (.NET) A waveform object containing the measurement

data.

Ivi.Driver.

IWaveform<Int16>

Defined Values for the MaxTimeMilliseconds Parameter (C/COM)

Name Description

 Language Identifier

Immediate The function returns immediately. If no valid data is available, the function returns an

error.

 C IVIDIGITIZER_VAL_TIMEOUT_IMMEDIATE

COM IviDigitizerTimeOutImmediate

Infinite The function waits indefinitely for the acquisition to complete before returning the data.

 C IVIDIGITIZER_VAL_TIMEOUT_INFINITE

COM IviDigitizerTimeOutInfinite

Defined Values for the maxTime Parameter (.NET)

Name Description

 Language Identifier

Immediate The function returns immediately. If no valid measurement value exists, the

function returns an error.

 .NET Precision TimeSpan.Zero

Infinite The function waits indefinitely for the measurement to complete.

 .NET Precision TimeSpan. MaxValue

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return these additional class-defined status codes:

¶ Channel Not Enabled

¶ Incompatible Fetch

¶ Max Time Exceeded

IVI-4.15: IviDigitizer Class Specification 112 IVI Foundation

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

Note that the .NET MaxTimeExceededException is defined in IVI-3.2: Inherent Capabilities Specification.

This method can also throw these additional class-defined exceptions:

¶ Channel Not Enabled

¶ Incompatible Fetch

IVI Foundation 113 IVI-4.15: IviDigitizer Class Specification

4.3.20 Read Waveform Int32

Description

This function operates identically to the Read Waveform Int16, with the only difference being the data type

of the returned waveform array. Please see the definition of that function for details.

.NET Method Prototype

IWaveform<Int32> Channels[].Measurement.ReadWaveform (

 PrecisionTimeSpan maxTime,

 IWaveform<Int32> wave form);

COM Method Prototype

HRESULT Channels.Item().Measurement.ReadWaveformInt 32 (

 [in] long MaxTimeMilliseconds,

 [in, out] SAFEARRAY(long)* WaveformArray,

 [in, out] __int64* ActualPoints,

 [in, out] __int64* FirstValidPoint,

 [in, out] double* InitialXOffset,

 [in, out] double* InitialXTimeSeconds,

 [in, out] double* InitialXTimeFraction,

 [in, out] double* XIncrement,

 [in, out] double* ScaleFactor,

 [in, out] double* ScaleOffset);

C Prototype

ViStatus IviDigitizer_ReadWaveformInt 32 (ViSession Vi,

 ViConstString ChannelName,

 ViInt32 MaxTimeMilliseconds,

 ViInt64 WaveformArraySize,

 ViInt 32 WaveformArray[],

 ViInt64* ActualPoints,

 ViInt64* FirstValidPoint,

 ViReal64* InitialXOffset,

 ViReal64* InitialXTimeSeconds,

 ViReal64* InitialXTimeFraction,

 ViReal64* XIncrement,

 ViReal64* ScaleFactor,

 ViReal64* ScaleOffset);

Parameters

Inputs Description Base Type

Vi (C) Instrument handle. ViSession

ChannelName (C) Name of the channel from which to retrieve the data. ViConstString

MaxTimeMilliseconds

(C/COM)
Specifies the maximum time the end-user allows for

this method to complete in milliseconds. The values

of Immediate and Infinite, as defined in IviDigitizer

Function Parameter Value Definitions, are also

allowed.

ViInt32

maxTime (.NET) Specifies the maximum time the end-user allows for

this method to complete. The values of Immediate

and Infinite, as defined in IviDigitizer Function

Parameter Value Definitions, are also allowed.

Ivi.Driver.

Precision TimeSpan

IVI-4.15: IviDigitizer Class Specification 114 IVI Foundation

WaveformArraySize (C) Specifies the allocated size of the WaveformArray

buffer, in number of data points. If this value is

smaller than the total number of points to be

retrieved, the driver will fill the waveform buffer as

fully as possible and return the actual number of

points retrieved in the ActualPoints parameter. In

IVI -COM, the driver will allocate the memory

buffer, unless a non-empty SAFEARRAY is passed

as input. In the latter case, the driver shall not

reallocate a memory buffer.

ViInt64

waveform (.NET) The waveform object into which the measurement

data is stored. The waveform memory may be

allocated before calling this method, or during the

call to this method. To allocate memory before

calling this method, create a waveform object using

the Create Waveform method and set the waveform

parameter to that waveform object. To allocate

memory during the call to this method, set the

waveform parameter to

(IWaveform< Int32 >)null . Note that this is

critically different than setting waveform to null ,

which generates a build error. The method will also

allocate memory during the call if the waveform

parameter is set to a waveform object with zero

sized data.

IviDriver.

IWaveform<Int32>

Outputs Description Base Type

WaveformArray (C/COM) Buffer into which the acquired waveform is stored.

For IVI-C, this buffer is always user allocated. For

IVI -COM, this buffer may either be user allocated or

driver allocated. To have the driver allocate the

buffer, the user passes in a valid pointer to a NULL

SAFEARRAY. Note that this is critically different

than passing in a NULL pointer, which generates an

error. When IVI-COM users pass in a pointer to a

non-NULL SAFEARRAY, the driver fills the user-

allocated array in the same fashion as with IVI-C.

Units for the individual array elements are unscaled

ADC values.

ViInt32[]

ActualPoints (C/COM) Indicates how many data points were actually

retrieved from the instrument.

ViInt64

FirstValidPoint (C/COM) Indicates the index of the first valid data point in the

output Data array. This value will often be zero.

However, some digitizer hardware designs transfer

data most efficiently when the data is aligned with

specific memory address boundaries. In those cases,

the hardware may return a few invalid data points at

the beginning of a record. This eliminates the need to

shift the data during the transfer, ensuring maximum

data transfer rates.

ViInt64

IVI Foundation 115 IVI-4.15: IviDigitizer Class Specification

InitialXOffset (C/COM) The time in relation to the Trigger Event of the first

point in the waveform in seconds. Negative values

mean that the first point in the waveform array was

acquired before the trigger event.

ViReal64

InitialXTimeSeconds

(C/COM)
Specifies the seconds portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

InitialXTimeFraction

(C/COM)
Specifies the fractional portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

XIncrement (C/COM) The time between points in the acquired waveform in

seconds.

ViReal64

ScaleFactor (C/COM) Scaling factor for the waveform data. ViReal64

ScaleOffset (C/COM) Scaling offset for the waveform data. ViReal64

Return Value (.NET) A waveform object containing the measurement

data.

Ivi.Driver.

IWaveform<Int32>

IVI-4.15: IviDigitizer Class Specification 116 IVI Foundation

Defined Values for the MaxTimeMilliseconds Parameter (C/COM)

Name Description

 Language Identifier

Immediate The function returns immediately. If no valid data is available, the function returns an

error.

 C IVIDIGITIZER_VAL_TIMEOUT_IMMEDIATE

COM IviDigitizerTimeOutImmediate

Infinite The function waits indefinitely for the acquisition to complete before returning the data.

 C IVIDIGITIZER_VAL_TIMEOUT_INFINITE

COM IviDigitizerTimeOutInfinite

Defined Values for the maxTime Parameter (.NET)

Name Description

 Language Identifier

Immediate The function returns immediately. If no valid measurement value exists, the

function returns an error.

 .NET Precision TimeSpan.Zero

Infinite The function waits indefinitely for the measurement to complete.

 .NET Precision TimeSpan. MaxValue

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return this additional class-defined status code:

¶ Channel Not Enabled

¶ Incompatible Fetch

¶ Max Time Exceeded

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

Note that the .NET MaxTimeExceededException is defined in IVI-3.2: Inherent Capabilities Specification.

This method can also throw these additional class-defined exceptions:

¶ Channel Not Enabled

¶ Incompatible Fetch

IVI Foundation 117 IVI-4.15: IviDigitizer Class Specification

4.3.21 Read Waveform Int8

Description

This function operates identically to the Read Waveform Int16, with the only difference being the data type

of the returned waveform array. Please see the definition of that function for details.

.NET Method Prototype

IWaveform< SByte> Channels[].Measurement.ReadWaveform (

 PrecisionTimeSpan maxTime,

 IWaveform< SByte> waveform);

COM Method Prototype

HRESULT Channels.Item().Measurement.ReadWaveformInt 8 (

 [in] long MaxTimeMilliseconds,

 [in, out] SAFEARRAY(BYTE)* WaveformArray,

 [in, out] __int64* ActualPoints,

 [in, out] __int64* FirstValidPoint,

 [in, out] double* InitialXOffset,

 [in, out] double* InitialXTimeSecon ds,

 [in, out] double* InitialXTimeFraction,

 [in, out] double* XIncrement,

 [in, out] double* ScaleFactor,

 [in, out] d ouble* ScaleOffset);

C Prototype

ViStatus IviDigitizer_ReadWaveformInt 8 (ViSession Vi,

 ViConstString ChannelName,

 ViInt32 MaxTimeMilliseconds,

 ViInt64 WaveformArraySize,

 ViInt 8 WaveformArray[],

 ViInt64* ActualPoints,

 ViInt64* FirstValidPoint,

 ViReal64* InitialXOffset,

 ViReal64* InitialXTimeSeconds,

 ViReal64* InitialXTimeFraction,

 ViReal64* XIncrement,

 ViReal64* ScaleFactor,

 ViReal64* ScaleOffset);

Parameters

Inputs Description Base Type

Vi (C) Instrument handle. ViSession

ChannelName (C) Name of the channel from which to retrieve the data. ViConstString

MaxTimeMilliseconds

(C/COM)
Specifies the maximum time the end-user allows for

this method to complete in milliseconds. The values

of Immediate and Infinite, as defined in IviDigitizer

Function Parameter Value Definitions, are also

allowed.

ViInt32

maxTime (.NET) Specifies the maximum time the end-user allows for

this method to complete. The values of Immediate

and Infinite, as defined in IviDigitizer Function

Parameter Value Definitions, are also allowed.

Ivi.Driver.

Precision TimeSpan

IVI-4.15: IviDigitizer Class Specification 118 IVI Foundation

WaveformArraySize (C) Specifies the allocated size of the WaveformArray

buffer, in number of data points. If this value is

smaller than the total number of points to be

retrieved, the driver will fill the waveform buffer as

fully as possible and return the actual number of

points retrieved in the ActualPoints parameter. In

IVI -COM, the driver will allocate the memory

buffer, unless a non-empty SAFEARRAY is passed

as input. In the latter case, the driver shall not

reallocate a memory buffer.

ViInt64

waveform (.NET) The waveform object into which the measurement

data is stored. The waveform memory may be

allocated before calling this method, or during the

call to this method. To allocate memory before

calling this method, create a waveform object using

the Create Waveform method and set the waveform

parameter to that waveform object. To allocate

memory during the call to this method, set the

waveform parameter to

(IWaveform< SByte >)null . Note that this is

critically different than setting waveform to null ,

which generates a build error. The method will also

allocate memory during the call if the waveform

parameter is set to a waveform object with zero

sized data.

IviDriver.

IWaveform< SByte>

Outputs Description Base Type

WaveformArray (C/COM) Buffer into which the acquired waveform is stored.

For IVI-C, this buffer is always user allocated. For

IVI -COM, this buffer may either be user allocated or

driver allocated. To have the driver allocate the

buffer, the user passes in a valid pointer to a NULL

SAFEARRAY. Note that this is critically different

than passing in a NULL pointer, which generates an

error. When IVI-COM users pass in a pointer to a

non-NULL SAFEARRAY, the driver fills the user-

allocated array in the same fashion as with IVI-C.

Units for the individual array elements are unscaled

ADC values.

ViInt8[]

ActualPoints (C/COM) Indicates how many data points were actually

retrieved from the instrument.

ViInt64

FirstValidPoint (C/COM) Indicates the index of the first valid data point in the

output Data array. This value will often be zero.

However, some digitizer hardware designs transfer

data most efficiently when the data is aligned with

specific memory address boundaries. In those cases,

the hardware may return a few invalid data points at

the beginning of a record. This eliminates the need to

shift the data during the transfer, ensuring maximum

data transfer rates.

ViInt64

IVI Foundation 119 IVI-4.15: IviDigitizer Class Specification

InitialXOffset (C/COM) The time in relation to the Trigger Event of the first

point in the waveform in seconds. Negative values

mean that the first point in the waveform array was

acquired before the trigger event.

ViReal64

InitialXTimeSeconds

(C/COM)
Specifies the seconds portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

InitialXTimeFraction

(C/COM)
Specifies the fractional portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

XIncrement (C/COM) The time between points in the acquired waveform in

seconds.

ViReal64

ScaleFactor (C/COM) Scaling factor for the waveform data. ViReal64

ScaleOffset (C/COM) Scaling offset for the waveform data. ViReal64

Return Value (.NET) A waveform object containing the measurement

data.

Ivi.Driver.

IWaveform< SByte>

Defined Values for the MaxTimeMilliseconds Parameter (C/COM)

Name Description

 Language Identifier

Immediate The function returns immediately. If no valid data is available, the function returns an

error.

 C IVIDIGITIZER_VAL_TIMEOUT_IMMEDIATE

COM IviDigitizerTimeOutImmediate

Infinite The function waits indefinitely for the acquisition to complete before returning the data.

 C IVIDIGITIZER_VAL_TIMEOUT_INFINITE

COM IviDigitizerTimeOutInfinite

Defined Values for the maxTime Parameter (.NET)

Name Description

 Language Identifier

Immediate The function returns immediately. If no valid measurement value exists, the

function returns an error.

 .NET Precision TimeSpan.Zero

IVI-4.15: IviDigitizer Class Specification 120 IVI Foundation

Infinite The function waits indefinitely for the measurement to complete.

 .NET Precision TimeSpan. MaxValue

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return this additional class-defined status code:

¶ Channel Not Enabled

¶ Incompatible Fetch

¶ Max Time Exceeded

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

Note that the .NET MaxTimeExceededException is defined in IVI-3.2: Inherent Capabilities Specification.

This method can also throw these additional class-defined exceptions:

¶ Channel Not Enabled

¶ Incompatible Fetch

IVI Foundation 121 IVI-4.15: IviDigitizer Class Specification

4.3.22 Read Waveform Real64

Description

This function operates identically to the Read Waveform Int16, with the only difference being the data type

of the returned waveform array. Please see the definition of that function for details. Note that for this

function, after completion each element in the WaveformArray parameter is the actual sampled voltage in

Volts.

.NET Method Prototype

IWaveform<Double> Channels[].Measurement.ReadWav eform (

 PrecisionTimeSpan maxTime,

 IWaveform<Double> waveform);

COM Method Prototype

HRESULT Channels. Item().Measurement.ReadWaveformReal64 (

 [in] long MaxTimeMilliseconds,

 [in, out] SAFEARRAY(double)* WaveformArray,

 [in, out] __int64* ActualPoints,

 [in, out] __int64* FirstValidPoi nt,

 [in, out] double* InitialXOffset,

 [in, out] double* InitialXTimeSeconds,

 [in, out] double* InitialXTimeFraction,

 [in, out] double* XIncrement);

C Prototype

ViStatus IviDigitizer_ReadWaveform Real64 (ViSession Vi,

 ViConstString ChannelName,

 ViInt32 MaxTimeMilliseconds,

 ViInt64 WaveformArraySize,

 Vi Real64 WaveformArray[],

 ViInt64* ActualPoints,

 ViInt64* FirstValidPoint,

 ViReal64* InitialXOffset,

 ViReal64* InitialXTimeSeconds,

 ViReal64* InitialXTimeFraction,

 ViReal64* X Increment);

Parameters

Inputs Description Base Type

Vi (C) Instrument handle. ViSession

ChannelName (C) Name of the channel from which to retrieve the data. ViConstString

MaxTimeMilliseconds

(C/COM)
Specifies the maximum time the end-user allows for

this method to complete in milliseconds. The values

of Immediate and Infinite, as defined in IviDigitizer

Function Parameter Value Definitions, are also

allowed.

ViInt32

maxTime (.NET) Specifies the maximum time the end-user allows for

this method to complete. The values of Immediate

and Infinite, as defined in IviDigitizer Function

Parameter Value Definitions, are also allowed.

Precision TimeSpan

IVI-4.15: IviDigitizer Class Specification 122 IVI Foundation

WaveformArraySize (C) Specifies the allocated size of the WaveformArray

buffer, in number of data points. If this value is

smaller than the total number of points to be

retrieved, the driver will fill the waveform buffer as

fully as possible and return the actual number of

points retrieved in the ActualPoints parameter. In

IVI -COM, the driver will allocate the memory

buffer, unless a non-empty SAFEARRAY is passed

as input. In the latter case, the driver shall not

reallocate a memory buffer.

ViInt64

waveform (.NET) The waveform object into which the measurement

data is stored. The waveform memory may be

allocated before calling this method, or during the

call to this method. To allocate memory before

calling this method, create a waveform object using

the Create Waveform method and set the waveform

parameter to that waveform object. To allocate

memory during the call to this method, set the

waveform parameter to

(IWaveform< Double >)null . Note that this is

critically different than setting waveform to null ,

which generates a build error. The method will also

allocate memory during the call if the waveform

parameter is set to a waveform object with zero

sized data.

IviDriver.

IWaveform<Double>

Outputs Description Base Type

WaveformArray (C/COM) Buffer into which the acquired waveform is stored.

For IVI-C, this buffer is always user allocated. For

IVI -COM, this buffer may either be user allocated or

driver allocated. To have the driver allocate the

buffer, the user passes in a valid pointer to a NULL

SAFEARRAY. Note that this is critically different

than passing in a NULL pointer, which generates an

error. When IVI-COM users pass in a pointer to a

non-NULL SAFEARRAY, the driver fills the user-

allocated array in the same fashion as with IVI-C.

Units for the individual array elements are unscaled

ADC values.

ViReal64[]

ActualPoints (C/COM) Indicates how many data points were actually

retrieved from the instrument.

ViInt64

FirstValidPoint (C/COM) Indicates the index of the first valid data point in the

output Data array. This value will often be zero.

However, some digitizer hardware designs transfer

data most efficiently when the data is aligned with

specific memory address boundaries. In those cases,

the hardware may return a few invalid data points at

the beginning of a record. This eliminates the need to

shift the data during the transfer, ensuring maximum

data transfer rates.

ViInt64

IVI Foundation 123 IVI-4.15: IviDigitizer Class Specification

InitialXOffset (C/COM) The time in relation to the Trigger Event of the first

point in the waveform in seconds. Negative values

mean that the first point in the waveform array was

acquired before the trigger event.

ViReal64

InitialXTimeSeconds

(C/COM)
Specifies the seconds portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

InitialXTimeFraction

(C/COM)
Specifies the fractional portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the

sum of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time.

ViReal64

XIncrement (C/COM) The time between points in the acquired waveform in

seconds.

ViReal64

Return Value (.NET) A waveform object containing the measurement

data.

Ivi.Driver.

IWaveform<Double>

Defined Values for the MaxTimeMilliseconds Parameter (C/COM)

Name Description

 Language Identifier

Immediate The function returns immediately. If no valid data is available, the function returns an

error.

 C IVIDIGITIZER_VAL_TIMEOUT_IMMEDIATE

COM IviDigitizerTimeOutImmediate

Infinite The function waits indefinitely for the acquisition to complete before returning the data.

 C IVIDIGITIZER_VAL_TIMEOUT_INFINITE

COM IviDigitizerTimeOutInfinite

Defined Values for the maxTime Parameter (.NET)

Name Description

 Language Identifier

Immediate The function returns immediately. If no valid measurement value exists, the

function returns an error.

 .NET Precision TimeSpan.Zero

Infinite The function waits indefinitely for the measurement to complete.

 .NET Precision TimeSpan. MaxValue

IVI-4.15: IviDigitizer Class Specification 124 IVI Foundation

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return this additional class-defined status code:

¶ Chanel Not Enabled

¶ Incompatible Fetch

¶ Max Time Exceeded

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

Note that the .NET MaxTimeExceededException is defined in IVI-3.2: Inherent Capabilities Specification.

This method can also throw these additional class-defined exceptions:

¶ Channel Not Enabled

¶ Incompatible Fetch

IVI Foundation 125 IVI-4.15: IviDigitizer Class Specification

4.3.23 Wait For Acquisition Complete

Description

Waits until the configured acquisition is complete. If no acquisition is currently running, this function

returns immediately. If the acquisition does not complete within the time period the user specified with the

MaxTimeMilliseconds parameter, the function returns the Max Time Exceeded error.

.NET Method Prototype

void Acquisition.W aitForAcquisition Complete (PrecisionTimeSpan maxTime);

COM Method Prototype

HRESULT Acquisition.WaitForAcquisitionComplete ([in] long MaxTimeMilliseconds);

C Prototype

ViStatus IviDigitizer_WaitForAcquisitionComplete (ViSession Vi,

 ViInt32 MaxTimeMilliseconds);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

MaxTimeMilliseconds

(C/COM)
Specifies the maximum time the end-user allows for

this function to complete. The units are milliseconds.

The values of Immediate and Infinite, as defined in

IviDigitizer Function Parameter Value Definitions,

are also allowed.

ViInt32

maxTime (.NET) Specifies the maximum time the end-user allows for

this method to complete. The values of Imediate and

Infinite, as defined in IviDigitizer Function

Parameter Value Definitions, are also allowed.

Ivi.Driver.

PrecisionTimeSpan

Defined Values for the MaxTimeMilliseconds Parameter (C/COM)

Name Description

 Language Identifier

Immediate The function returns immediately. If no valid data is available, the function returns an

error.

 C IVIDIGITIZER_VAL_TIMEOUT_IMMEDIATE

COM IviDigitizerTimeOutImmediate

Infinite The function waits indefinitely for the acquisition to complete.

 C IVIDIGITIZER_VAL_TIMEOUT_INFINITE

COM IviDigitizerTimeOutInfinite

Defined Values for the maxTime Parameter (.NET)

IVI-4.15: IviDigitizer Class Specification 126 IVI Foundation

Name Description

 Language Identifier

Immediate The function returns immediately. If no valid measurement value exists, the

function returns an error.

 .NET Precision TimeSpan.Zero

Infinite The function waits indefinitely for the measurement to complete.

 .NET Precision TimeSpan. MaxValue

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return this additional class-defined status code:

¶ Max Time Exceeded

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

Note that the .NET MaxTimeExceededException is defined in IVI-3.2: Inherent Capabilities Specification.

IVI Foundation 127 IVI-4.15: IviDigitizer Class Specification

4.4 IviDigitizerBase Behavior Model

The following behavior diagram illustrates the IviDigitizerBase group capability behavior.

Figure 4-12 IviDigitizerBase Behavior Model

Typically the user configures the digitizer while it is in the Idle state. You can configure the digitizer by

calling the high-level configure channel, configure acquisition type, configure acquisition record, configure

trigger, and configure edge trigger source functions as well as by directly calling the appropriate channel,

acquisition and trigger sub-system attributes.

To acquire waveforms, the IviDigitizer class presents high-level read waveform functions, as well as the

low-level functions initiate acquisition, acquisition status, fetch waveform, and abort.

The Read Waveform functions initiate a waveform acquisition and returns the acquired waveform after the

digitizer has returned to the Idle state.

The Initiate Acquisition, Fetch Waveform, and Abort functions give the user lower-level control over the

measurement process. Initiate Acquisition initiates a waveform acquisition and moves the instrument into

the Wait-For-Trigger state. The type of trigger is configured with the Trigger sub-system attributes or with

the configure edge trigger source function.

Multiple versions of the Read and Fetch functions are provided to accommodate digitizers of various native

data sizes for each waveform sample. Waveforms can be retrieved as arrays of 8-bit, 16-bit, and 32-bit

integers as well as 32-bit and 64-bit floating-point numbers. For the data sizes not natively supported by the

IVI-4.15: IviDigitizer Class Specification 128 IVI Foundation

digitizer, the driver shall automatically convert the data to the appropriate format. Even though this

conversion may reduce performance, it shall be supported for interchangeability. Manufacturers shall

mention in their documentation the conversion rules they use (e.g. whether the data bits are LSB- or MSB-

justified). The Scale Factor and Scale Offset output parameters shall also allow converting the integer

values into Volts. If the data type is smaller (i.e. uses less bits) than the digitizerôs native type, the most

significant bits shall be kept.

If the trigger delay is negative, the first point in the waveform record occurs prior to the trigger event.

When the trigger event occurs, the waveform record contains the amount of pre-trigger data that

corresponds to the trigger delay. The digitizer leaves the Wait-for-Trigger state and acquires the remaining

points in the waveform record.

If the trigger delay equals zero, the first point in the waveform record occurs at the time of the trigger

event. When the trigger event occurs, the digitizer leaves the Wait-for-Trigger state and acquires all the

points in the waveform record.

If the acquisition start time is greater than zero, the first point in the waveform record occurs after the

trigger event. When the trigger event occurs, the digitizer leaves the Wait-for-Trigger state, waits a length

of time that is equal to the trigger delay, and acquires all the points in the waveform record.

If the digitizer has acquired the requested number of records, it returns to the Idle state. However, if the

digitizer must acquire additional records to satisfy the Num Records requirement specified by the user, it

then moves to the Wait-For-Samples state. The digitizer then waits until the hold-off time expires before

moving to the Wait-For-Trigger.

Note that the hold-off time is measured from the moment the digitizer exits the Wait-for-Trigger state, not

from the moment when the digitizer enters the Wait-for-Samples state.

After the instrument meets its acquisition complete criterion, the digitizer returns to the Idle state. (This

criterion is typically 95-98% of the acquisition record; there may be instrument specific attributes that

allow you to configure the completion criterion.) You can use the Acquisition Status function to determine

if the acquisition is complete or is still in progress.

The Fetch Waveform functions are used to return a waveform from a previously initiated measurement.

The Read Waveform and Fetch Waveform functions return the following parameters:

¶ a waveform array

¶ the time of the first point in the waveform array in relationship to the trigger event

¶ the index of the index of the first valid point in the waveform record

¶ the number of valid points in the waveform record

IVI Foundation 129 IVI-4.15: IviDigitizer Class Specification

5. IviDigitizerMultiRecordAcquisition Extension Group

5.1 IviDigitizerMultiRecordAcquisition Overview

The IviDigitizerMultiRecordAcquisition extension group supports digitizers with the ability to perform

multi-record acquisitions, and/or fetch of partial records. If the number of waveform records set for the

acquisition is greater than 1, the acquisition shall be initiated with the Initiate Acquisition function, and the

data shall be retrieved with the Fetch Multi-Record Waveform functions once the acquisition is complete.

5.2 IviDigitizerMultiRecordAcquisition Waveform Collection (IVI.NET Only)

For IVI.NET, the IviDigitizerMultiRecordAcquisition extension group defines the

IWaveformCollection<T> interface for returning multi-record waveforms from the Digitizer.

Note that the IVI Foundation does not provide an implementation of IWaveformCollection<T>. Each

specific IVI.NET IviDigitizer instrument driver implements CreateWaveform Collection and the Fetch

Multi -Record Waveform methods based on an implementation of IWaveformCollection<T> that is suitable

to the driver. In addition to implementing IWaveformCollection<T>, such implementations will also need

to implement methods and properties that allow the driver to allocate memory in a manner that the driver

can use, and to manage the collection (Add, Remove, Clear, etc.).

IWaveformCollection<T> derives from IEnumerable<IWaveform<T>> and IEnumerable.

The IWaveformCollection<T> interface defines the following properties:

¶ Item (IVI.NET Only)

¶ ValidWaveformCount

This section describes the behavior and requirements of each property.

IVI-4.15: IviDigitizer Class Specification 130 IVI Foundation

5.2.1 Item

Data Type Access Applies To Coercion High Level Functions

ViReal64 RO N/A None N/A

.NET Property Name

IWaveform<T> this [Int64 index]

COM Property Name

N/A

C Constant Name

N/A

Description

Returns the waveform at the specified index from the collection. The index must refer to a valid, measured

waveform, and the range of indexes accepted is 0 to ValidWaveformCount ï 1.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 131 IVI-4.15: IviDigitizer Class Specification

5.2.2 Valid Waveform Count

Data Type Access Applies To Coercion High Level Functions

ViReal64 RO N/A None N/A

.NET Property Name

IWaveformCollection<T>.ValidWaveformCount

COM Property Name

N/A

C Constant Name

N/A

Description

The number of waveform objects in the collection which contain multi-record measurement data from the

instrument.

.NET Exceptions

Barring errors that may be generated by the .NET runtime, this property shall always succeed.

IVI-4.15: IviDigitizer Class Specification 132 IVI Foundation

5.3 IviDigitizerMultiRecordAcquisition Functions

The IviDigitizerMultiRecordAcquisition extension group defines the following functions:

¶ Create Waveform Collection (IVI.NET Only)

¶ Fetch Multi -Record Waveform Int16

¶ Fetch Multi -Record Waveform Int32

¶ Fetch Multi -Record Waveform Int8

¶ Fetch Multi -Record Waveform Real64

This section describes the behavior and requirements of each function.

IVI Foundation 133 IVI-4.15: IviDigitizer Class Specification

5.3.1 Create Waveform Collection (IVI.NET Only)

Description

This function creates an array of waveform objects and shall allocate the necessary memory to transfer each

waveform in the array from the instrument to the host.

If numberOfWaveforms is zero, the driver shall allocate the number of Waveforms based on the current

driver configuration.

If sizePerWaveform is zero, the driver shall allocate the memory for each waveform memory with a size

based on the current driver configuration.

No waveforms measurements are stored in the waveform collection immediately after returning from this

method, and the value of IWaveformCollection<T>.ValidWaveformCount shall be 0.

.NET Method Prototype

IWaveformCollection<Double > Acquisition.Create WaveformCollection Double (

 Int 64 numberOfWaveforms,

 Int 64 sizePerWaveform);

IWaveform Collection <Int32> Acquisition.Create Waveform CollectionInt32 (

 Int 64 numberOfWaveforms,

 Int 64 sizePerWaveform);

IWaveform Collection <Int16> Acquisition.Create Waveform CollectionInt16 (

 Int 64 numberOfWaveforms,

 Int 64 sizePerWaveform);

IWaveform Collection <SByte> Acquisition.Create Waveform Collection SByte (

 Int 64 numberOfWaveforms,

 Int 64 sizePerWaveform);

COM Method Prototype

N/A

C Prototype

N/A

Parameters

Inputs Description Base Type

numberOfWaveforms The number of waveforms in the array of

waveforms.

Int 64

sizePerWaveform The number of elements in each waveform. Int 64

Outputs Description Base Type

Return value

(.NET)
The newly allocated multi-record waveform. Ivi.Driver.IWaveform<T>[]

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

IVI-4.15: IviDigitizer Class Specification 134 IVI Foundation

5.3.2 Fetch Multi-Record Waveform Int16

Description

This function returns the (multi-record) waveform the digitizer acquired for the specified channel. The

waveform is from a previously initiated acquisition.

The acquired waveform records can be retrieved all together, or in chunks. You specify the first record and

the number of consecutive records to fetch. Note that the record number is zero-based, and reset when you

initiate a new acquisition, i.e. record 0 is the first record of the last acquisition. The return parameter

ActualRecords indicates how many of the requested records have actually completed successfully. The

return parameters ActualPoints , FirstVal idPoint , InitialXOffset , InitialXTimeSeconds and

InitialXTimeFraction have a value for each record, and therefore are arrays of size NumRecords .

However, if the value of ActualRecords is smaller than the requested number of records, these arrays

shall have only their first ActualRecords elements valid. If a NULL pointer is passed in for any of these

parameters, the driver shall ignore it. Note that the value of FirstValidPoint is relative to the start of

the waveform array, such that:

Sample i of record R = WaveformArray[FirstValidPoint[R]+i]

You must use the Initiate Acquisition function to start a multi-record (Num Record > 1) acquisition on the

channels that the end-user configures with the Configure Channel function. The digitizer acquires

waveforms on the concurrently enabled channels. If the channel is not enabled for the acquisition, this

function returns the Channel Not Enabled error.

You can use the Acquisition Status function to determine when the acquisition is complete. You must call

the FetchMultiRecordWaveformInt16 function separately for each enabled channel to obtain the

waveforms. Alternatively, you can use the Wait For Acquisition Complete function to block the calling

program until the acquisition is finished.

The behavior is different for IVI-C/IVI -COM and IVI.NET as follows:

IVI -C/IVI-COM: After this function executes, each element in the WaveformArray parameter is

an unscaled value directly from the digitizerôs analog-to-digital converter (ADC).

IVI.NET: For .NET the return value of IWaveformCollection<Int16> is a waveform collection

object. Refer to Section 4, Common Properties and Methods of Waveform and Spectrum

Interfaces, and Section 5, IWaveform<T> Interface, of IVI-3.18: IVI.NET Utility Classes and

Interfaces Specification, for the definition of the IWaveform object and information regarding its

use.

The waveform collection memory may be allocated before calling this method, or during the call

to this method. To allocate memory before calling this method, create a waveform collection

object using the Create Waveform Collection method and set the waveforms parameter to that

waveform collection. To allocate memory during the call to this method, set the waveforms

parameter to (IWaveformCollection<Int16>)null . Note that this is critically different

than setting waveforms to null , which generates a build error. Casting null to

IWaveformCollection<Int16> provides the strong typing necessary to select the correct

IVI.NET overload of the Fetch Multi-Record Waveform method.

For .NET, if the waveforms parameter is null, the driver will create a waveform collection object

and will determine the number of waveforms in the collection, and the size of each waveform,

based on the current settings of the instrument and the method parameters.

The IVI.NET return value maps to C and COM out parameters as follows:

IVI Foundation 135 IVI-4.15: IviDigitizer Class Specification

¶ The C/COM WaveformArray parameter is an array of values returned from the instrument that

includes values for all of the waveforms being returned. In .NET, these values are stored in the

individual waveforms in the waveform collection.

¶ The C/COM ActualRecords parameter corresponds to the waveform collection

ValidWaveformCount property.

¶ The C/COM ActualPoints parameter is an array of sizes, one per waveform being returned. In

.NET, these values are represented by the ValidPointCount property of each individual waveform.

¶ The C/COM FirstValidPoint parameter is an array of first valid point values, one per waveform

being returned. In .NET, these values are represented by the FirstValidPoint property of each

individual waveform.

¶ The C/COM InitialXOffset parameter is an array of offsets between the trigger time and the time

of the first point in a waveform, one per waveform being returned. In .NET, these values are

represented by the Start Time property of each individual waveform.

¶ The C/COM InitialXTimeSeconds and InitialXTimeFraction parameters are both arrays that, when

corresponding values are combined, yield the start time of a wavefrom, one time (seconds +

fractional seconds) per waveform being returned. In .NET, these values are calculated for each

individual waveform by adding the waveform Start Time property to the waveform Trigger Time

property.

¶ The C/COM XIncrement parameter is the time span separating each measured point and is the

same for all of waveforms being returned. In .NET, this value is represented by the

IntervalPerPoint property of each individual waveform. In .NET, all of the waveforms in a

waveform collection shall have the same value for IntervalPerPoint.

¶ The C/COM ScaleFactor parameter is the scale factor that must be applied (along with the scale

offset) to each measured point to yield the actual, real value for the point. In .NET, this value is

represented by the Scale property of each individual waveform. In .NET, all of the waveforms in a

waveform collection shall have the same value for Scale.

¶ The C/COM ScaleOffset parameter is the scale offset that must be applied (along with the scale

factor) to each measured point to yield the actual, real value for the point. In .NET, this value is

represented by the Offset property of each individual waveform. In .NET, all of the waveforms in

a waveform collection shall have the same value for Offset.

This function does not check the instrument status. Typically, the end-user calls this function only in a

sequence of calls to other low-level driver functions. The sequence performs one operation. The end-user

uses the low-level functions to optimize one or more aspects of interaction with the instrument. Call the

Error Query function at the conclusion of the sequence to check the instrument status.

.NET Method Prototype

IWaveform Collection <Int16>

 Channels [] .MultiRecordMeasurement.FetchMultiRecordWaveform (

 I nt64 f irstRecord,

 Int64 numberOf Records ,

 I nt64 offsetWithinRecord,

 I nt64 numberOf PointsPerRecord,

 IWaveformCollection<Int16> waveforms);

COM Method Prototype

HRESULT Channels.Item(). MultiRecord Measurement.FetchMultiRecordWaveformInt16 (

 [in] __in t64 FirstRecord,

IVI-4.15: IviDigitizer Class Specification 136 IVI Foundation

 [in] __int64 NumRecords,

 [in] __int64 OffsetWithinRecord,

 [in] __int64 NumPointsPerRecord,

 [in, out] SAFEARRAY(short)* Wave formArray,

 [in, out] __int64 * ActualRecords,

 [in, out] SAFEARRAY(__int64)* ActualPoints,

 [in, out] SAFEARRAY(__int64)* FirstValidPoint,

 [in , out] SAFEARRAY(double)* InitialXOffset,

 [in, out] SAFEARRAY(double)* InitialXTimeSeconds,

 [in, out] SAFEARRAY(double)* InitialXTimeFraction,

 [in, out] double* XIncreme nt,

 [in, out] double* ScaleFactor,

 [in, out] double* ScaleOffset);

C Prototype

ViStatus IviDigitizer_FetchMultiRecordWaveformInt16 (ViSession Vi,

 ViCon stString ChannelName,

 ViInt64 FirstRecord,

 ViInt64 NumRecords,

 ViInt64 OffsetWithinRecord,

 ViInt64 NumPointsPerRecord,

 ViInt64 WaveformArraySize,

 ViInt16 WaveformArray[],

 ViInt64* Act ualRecords,

 ViInt64 ActualPoints[],

 ViInt64 FirstValidPoint[],

 ViReal64 InitialXOffset[],

 ViReal64 InitialXTimeSeconds[],

 ViReal64 InitialXTimeFraction[],

 ViReal64* XIncrement,

 ViReal 64* ScaleFactor,

 ViReal64* ScaleOffset);

Parameters

Inputs Description Base Type

Vi (C) Instrument handle. ViSession

ChannelName (C) Name of the channel from which to retrieve the data. ViConstString

FirstRecord Specifies the number of the first record to read. ViInt64

NumRecords (C/COM)

NumberOfRecords (.NET)

Specifies the number of consecutive records to read. If

NumRecords is greater than 1, this parameter allows

full or partial (if OffsetWithinRecord and

NumPointsPerRecord are specified accordingly) data to

be retrieved from multiple digitizer records in a single

Fetch call. If NumRecords is less than or equal to zero,

an error will be returned.

ViInt64

OffsetWithinRecord Specifies the start index within the record from which

the data should be retrieved. While normally zero, this

parameter allows users to retrieve partial records. Data

that comes before the OffsetWithinRecord index will

not be retrieved. This is perhaps most useful when

retrieving very large data records because it allows

records to be retrieved in several smaller chunks.

ViInt64

IVI Foundation 137 IVI-4.15: IviDigitizer Class Specification

NumPointsPerRecord

(C/COM)

NumberOfPointsPerRecord

(.NET)

Specifies the number of data points per record to return.

This number may be larger than the amount of data

available. Use the ActualPoints parameter to determine

how many data points were returned.

ViInt64

WaveformArraySize (C) Specifies the allocated size of the WaveformArray

buffer, in number of data points. If this value is smaller

than the total number of points to be retrieved, the

driver will fill the waveform buffer as fully as possible

and return the actual number of points retrieved in the

ActualPoints parameter. In IVI-COM it is the driver

that allocates the memory buffer, unless a non-NULL

SAFEARRAY is passed.

ViInt64

waveforms (.NET) A Waveform collection object with a particular number

of waveforms, each with data of a particular size

needed only for reusing waveform object across reads.

The waveform collection memory may be allocated

before calling this method, or during the call to this

method. To allocate memory before calling this

method, create a waveform collection object using the

Create Waveform Collection method and set the

waveforms parameter to that waveform collection. To

allocate memory during the call to this method, set the

waveforms parameter to

(IWaveformCollection< Int16 >)null . Note that

this is critically different than setting waveforms to

null , which generates a build error.

IWavefo rmCollec

tion<Int16>

Outputs Description Base Type

WaveformArray (C/COM) Buffer into which the acquired waveform is stored. For

IVI -C, this buffer is always user allocated. For IVI-

COM, this buffer may either be user allocated or driver

allocated. To have the driver allocate the buffer, the

user passes in a valid pointer to a NULL

SAFEARRAY. Note that this is critically different than

passing in a NULL pointer, which generates an error.

When IVI-COM users pass in a pointer to a non-NULL

SAFEARRAY, the driver fills the user-allocated array

in the same fashion as with IVI-C.

ViInt16[]

ActualRecords (C/COM) Indicates how many records in the acquisition

completed successfully. The arrays ActualPoints ,

FirstValidPoint , InitialXOffset ,

InitialX TimeSeconds and

InitialXTimeFraction have the corresponding first

contiguous values valid.

ViInt64

ActualPoints (C/COM) Indicates how many data points were actually retrieved

from the instrument for each completed record. This is

an array of size at least NumRecords or a NULL

pointer. For IVI-C, this array is always user allocated.

For IVI-COM, this buffer may either be user allocated

or driver allocated, with the same rules as for

WaveformArray .

ViInt64[]

IVI-4.15: IviDigitizer Class Specification 138 IVI Foundation

FirstValidPoint (C/COM) Indicates the index of the first valid data point in the

output Data array for each completed record. This value

will often be simply the record index (zero to

ActualRecords-1) times NumPointsPerRecord.

However, some digitizer hardware designs transfer data

most efficiently when the data is aligned with specific

memory address boundaries. In those cases, the

hardware may return a few invalid data points at the

beginning of a record. This eliminates the need to shift

the data during the transfer, ensuring maximum data

transfer rates. This is an array of size at least

NumRecords or a NULL pointer. For IVI-C, this array

is always user allocated. For IVI-COM, this buffer may

either be user allocated or driver allocated, with the

same rules as for WaveformArray .

ViInt64[]

InitialXOffset (C/COM) The time in relation to the Trigger Event of the first

point in the waveform in seconds. Negative values

mean that the first point in the waveform array was

acquired before the trigger event. This is an array of

size at least NumRecords or a NULL pointer. For IVI-

C, this array is always user allocated. For IVI-COM,

this buffer may either be user allocated or driver

allocated, with the same rules as for WaveformArray .

ViReal64[]

InitialXTimeSeconds

(C/COM)
Specifies the seconds portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the sum

of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time. This is an array of

size at least NumRecords or a NULL pointer. For IVI-

C, this array is always user allocated. For IVI-COM,

this buffer may either be user allocated or driver

allocated, with the same rules as for WaveformArray .

ViReal64[]

InitialXTimeFraction

(C/COM)
Specifies the fractional portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the sum

of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time. This is an array of

size at least NumRecords or a NULL pointer. For IVI-

C, this array is always user allocated. For IVI-COM,

this buffer may either be user allocated or driver

allocated, with the same rules as for WaveformArray .

ViReal64[]

XIncrement (C/COM) The time between points in the acquired waveform in

seconds.

ViReal64

ScaleFactor (C/COM) Scaling factor for the waveform data. ViReal64

ScaleOffset (C/COM) Scaling offset for the waveform data. ViReal64

IVI Foundation 139 IVI-4.15: IviDigitizer Class Specification

Return Value (.NET) A waveform collection object with data from the

channel.

(In .NET, this is the return value of the method.)

(The IVI-3.2: Inherent Capabilities Specification

defines the IwaveformCollection interface.)

IWaveformCollec

tion<Int16>

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return this additional class-defined status code:

¶ Channel Not Enabled

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

This method can also throw these additional class-defined exceptions:

¶ Channel Not Enabled

IVI-4.15: IviDigitizer Class Specification 140 IVI Foundation

5.3.3 Fetch Multi-Record Waveform Int32

Description

This function operates identically to the Fetch Multi-Record Waveform Int16, with the only difference

being the data type of the returned waveform array. Please see the definition of that function for details.

.NET Method Prototype

IWaveformCollection<Int32>

 Channels[].MultiRecordMeasurement.FetchMultiRecordWaveform (

 Int64 f irstRecord,

 Int64 numberOf Records,

 Int64 offsetWithinRecord,

 Int64 numberOf PointsPerRecord,

 IWaveformCollection<Int32> waveforms);

COM Method Prototype

HRESULT Channels.Item(). MultiRecord Measurement.FetchMultiRecordWaveformInt32 (

 [in] __int64 FirstRecord,

 [in] __int64 NumRecords,

 [in] __int64 OffsetWithinRecord,

 [in] __int64 NumPointsPerRecord,

 [in, out] SAFEARRAY(long)* WaveformArray,

 [in, out] __int64 * ActualRecords,

 [in, out] SAFEARRAY(__int64)* ActualPoints,

 [in, out] SAFEARRAY(__int64)* FirstValidPoint,

 [in, out] SAFEARRAY(do uble)* InitialXOffset,

 [in, out] SAFEARRAY(double)* InitialXTimeSeconds,

 [in, out] SAFEARRAY(double)* InitialXTimeFraction,

 [in, out] double* XIncrement,

 [in, out] double* ScaleFactor,

 [in, out] double* ScaleOffset);

C Prototype

ViStatus IviDigitizer_FetchMultiRecordWaveformInt32 (ViSession Vi,

 ViConstString ChannelNam e,

 ViInt64 FirstRecord,

 ViInt64 NumRecords,

 ViInt64 OffsetWithinRecord,

 ViInt64 NumPointsPerRecord,

 ViInt64 WaveformArraySize,

 ViInt32 WaveformArray[],

 ViInt64* ActualRecords,

 ViInt64 ActualPoints[],

 ViInt64 FirstValidPoint[],

 ViReal64 InitialXOffset[],

 ViReal64 InitialXTimeSeconds[],

 ViReal64 InitialXTimeFraction[],

 ViReal64* XIncrement,

 ViReal64* ScaleFactor,

 ViReal64* ScaleOffset);

Parameters

Inputs Description Base Type

Vi (C) Instrument handle. ViSession

ChannelName (C) Name of the channel from which to retrieve the data. ViConstString

IVI Foundation 141 IVI-4.15: IviDigitizer Class Specification

FirstRecord Specifies the number of the first record to read. ViInt64

NumRecords (C/COM)

NumberOfRecords (.NET)

Specifies the number of consecutive records to read. If

NumRecords is greater than 1, this parameter allows

full or partial (if OffsetWithinRecord and

NumPointsPerRecord are specified accordingly) data to

be retrieved from multiple digitizer records in a single

Fetch call. If NumRecords is less than or equal to zero,

an error will be returned.

ViInt64

OffsetWithinRecord Specifies the start index within the record from which

the data should be retrieved. While normally zero, this

parameter allows users to retrieve partial records. Data

that comes before the OffsetWithinRecord index will

not be retrieved. This is perhaps most useful when

retrieving very large data records because it allows

records to be retrieved in several smaller chunks.

ViInt64

NumPointsPerRecord

(C/COM)

NumberOfPointsPerRecord

(.NET)

Specifies the number of data points per record to return.

This number may be larger than the amount of data

available. Use the ActualPoints parameter to determine

how many data points were returned.

ViInt64

WaveformArraySize (C) Specifies the allocated size of the WaveformArray

buffer, in number of data points. If this value is smaller

than the total number of points to be retrieved, the

driver will fill the waveform buffer as fully as possible

and return the actual number of points retrieved in the

ActualPoints parameter. In IVI-COM it is the driver

that allocates the memory buffer, unless a non-NULL

SAFEARRAY is passed.

ViInt64

waveforms (.NET) A Waveform collection object with a particular number

of waveforms, each with data of a particular size

needed only for reusing waveform object across reads.

The waveform collection memory may be allocated

before calling this method, or during the call to this

method. To allocate memory before calling this

method, create a waveform collection object using the

Create Waveform Collection method and set the

waveforms parameter to that waveform collection. To

allocate memory during the call to this method, set the

waveforms parameter to

(IWaveformCollection< Int32 >)null . Note that

this is critically different than setting waveforms to

null , which generates a build error.

IWaveformCollec

tion<Int32>

IVI-4.15: IviDigitizer Class Specification 142 IVI Foundation

Outputs Description Base Type

WaveformArray (C/COM) Buffer into which the acquired waveform is stored. For

IVI -C, this buffer is always user allocated. For IVI-

COM, this buffer may either be user allocated or driver

allocated. To have the driver allocate the buffer, the

user passes in a valid pointer to a NULL

SAFEARRAY. Note that this is critically different than

passing in a NULL pointer, which generates an error.

When IVI-COM users pass in a pointer to a non-NULL

SAFEARRAY, the driver fills the user-allocated array

in the same fashion as with IVI-C.

ViInt32[]

ActualRecords (C/COM) Indicates how many records in the acquisition

completed successfully. The arrays ActualPoints ,

FirstValidPoint , InitialXOffset ,

InitialX TimeSeconds and

InitialXTimeFraction have the corresponding first

contiguous values valid.

ViInt64

ActualPoints (C/COM) Indicates how many data points were actually retrieved

from the instrument for each completed record. This is

an array of size at least NumRecords or a NULL

pointer. For IVI-C, this array is always user allocated.

For IVI-COM, this buffer may either be user allocated

or driver allocated, with the same rules as for

WaveformArray .

ViInt64[]

FirstValidPoint (C/COM) Indicates the index of the first valid data point in the

output Data array for each completed record. This value

will often be simply the record index (zero to

ActualRecords-1) times NumPointsPerRecord.

However, some digitizer hardware designs transfer data

most efficiently when the data is aligned with specific

memory address boundaries. In those cases, the

hardware may return a few invalid data points at the

beginning of a record. This eliminates the need to shift

the data during the transfer, ensuring maximum data

transfer rates. This is an array of size at least

NumRecords or a NULL pointer. For IVI-C, this array

is always user allocated. For IVI-COM, this buffer may

either be user allocated or driver allocated, with the

same rules as for WaveformArray .

ViInt64[]

InitialXOffset (C/COM) The time in relation to the Trigger Event of the first

point in the waveform in seconds. Negative values

mean that the first point in the waveform array was

acquired before the trigger event. This is an array of

size at least NumRecords or a NULL pointer. For IVI-

C, this array is always user allocated. For IVI-COM,

this buffer may either be user allocated or driver

allocated, with the same rules as for WaveformArray .

ViReal64[]

IVI Foundation 143 IVI-4.15: IviDigitizer Class Specification

InitialXTimeSeconds

(C/COM)
Specifies the seconds portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the sum

of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time. This is an array of

size at least NumRecords or a NULL pointer. For IVI-

C, this array is always user allocated. For IVI-COM,

this buffer may either be user allocated or driver

allocated, with the same rules as for WaveformArray .

ViReal64[]

InitialXTimeFraction

(C/COM)
Specifies the fractional portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the sum

of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time. This is an array of

size at least NumRecords or a NULL pointer. For IVI-

C, this array is always user allocated. For IVI-COM,

this buffer may either be user allocated or driver

allocated, with the same rules as for WaveformArray .

ViReal64[]

XIncrement (C/COM) The time between points in the acquired waveform in

seconds.

ViReal64

ScaleFactor (C/COM) Scaling factor for the waveform data. ViReal64

ScaleOffset (C/COM) Scaling offset for the waveform data. ViReal64

Return Value (.NET) A waveform collection object with data from the

channel.

(In .NET, this is the return value of the method.)

(The IVI -3.2: Inherent Capabilities Specification

defines the IwaveformCollection interface.)

IWaveformCollec

tion<Int32>

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return this additional class-defined status code:

¶ Channel Not Enabled

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

This method can also throw these additional class-defined exceptions:

¶ Channel Not Enabled

IVI-4.15: IviDigitizer Class Specification 144 IVI Foundation

5.3.4 Fetch Multi-Record Waveform Int8

Description

This function operates identically to the Fetch Multi -Record Waveform Int16, with the only difference

being the data type of the returned waveform array. Please see the definition of that function for details.

.NET Method Prototype

IWaveformCollection< SByte >

 Channels[].MultiRecordMeasurement .FetchMultiRecordWaveform (

 Int64 f irstRecord,

 Int64 numberOf Records,

 Int64 offsetWithinRecord,

 Int64 numberOf PointsPerRecord,

 IWaveformCollection< SByte > waveforms);

COM Method Prototype

HRESULT Channels.Item(). MultiRecord Measurement.FetchMultiRecordWaveformInt8 (

 [in] __int64 FirstRecord,

 [in] __int64 NumRecords,

 [in] __int64 OffsetWithinRecord,

 [in] __int64 NumPointsPerRecord,

 [in, out] SAFEARRAY(BYTE)* WaveformArray,

 [in, out] __ int64 * ActualRecords,

 [in, out] SAFEARRAY(__int64)* ActualPoints,

 [in, out] SAFEARRAY(__int64)* FirstValidPoint,

 [in, out] SAFEARRAY(double)* InitialXOffset,

 [in, out] SAFEARRAY(double)* InitialXTimeSeconds,

 [in, out] SAFEARRAY(double)* InitialXTimeFraction,

 [in, out] double* XIncrement,

 [in, out] double* S caleFactor,

 [in, out] double* ScaleOffset);

C Prototype

ViStatus IviDigitizer_FetchMultiRecordWaveformInt8 (ViSession Vi,

 ViConstString ChannelName,

 ViInt64 FirstRecord,

 ViInt64 NumRecords,

 ViInt64 OffsetWithinRecord,

 ViInt64 NumPointsPerRecord,

 ViInt64 WaveformArraySize,

 ViInt8 WaveformArray[],

 ViInt64* ActualRecords,

 ViInt64 ActualPoints[],

 ViInt64 FirstValidPoint[],

 ViReal64 InitialXOffset[],

 ViReal64 InitialXTimeSeconds[],

 ViReal64 InitialXTimeFraction[],

 ViReal64* XIncrement,

 ViReal64* ScaleFactor,

 ViReal64* ScaleOffset);

Parameters

Inputs Description Base Type

Vi (C) Instrument handle. ViSession

ChannelName (C) Name of the channel from which to retrieve the data. ViConstString

IVI Foundation 145 IVI-4.15: IviDigitizer Class Specification

FirstRecord Specifies the number of the first record to read. ViInt64

NumRecords (C/COM)

NumberOfRecords (.NET)

Specifies the number of consecutive records to read. If

NumRecords is greater than 1, this parameter allows

full or partial (if OffsetWithinRecord and

NumPointsPerRecord are specified accordingly) data to

be retrieved from multiple digitizer records in a single

Fetch call. If NumRecords is less than or equal to zero,

an error will be returned.

ViInt64

OffsetWithinRecord Specifies the start index within the record from which

the data should be retrieved. While normally zero, this

parameter allows users to retrieve partial records. Data

that comes before the OffsetWithinRecord index will

not be retrieved. This is perhaps most useful when

retrieving very large data records because it allows

records to be retrieved in several smaller chunks.

ViInt64

NumPointsPerRecord

(C/COM)

NumberOfPointsPerRecord

(.NET)

Specifies the number of data points per record to return.

This number may be larger than the amount of data

available. Use the ActualPoints parameter to determine

how many data points were returned.

ViInt64

WaveformArraySize (C) Specifies the allocated size of the WaveformArray

buffer, in number of data points. If this value is smaller

than the total number of points to be retrieved, the

driver will fill the waveform buffer as fully as possible

and return the actual number of points retrieved in the

ActualPoints parameter. In IVI-COM it is the driver

that allocates the memory buffer, unless a non-NULL

SAFEARRAY is passed.

ViInt64

waveforms (.NET) A Waveform collection object with a particular number

of waveforms, each with data of a particular size

needed only for reusing waveform object across reads.

The waveform collection memory may be allocated

before calling this method, or during the call to this

method. To allocate memory before calling this

method, create a waveform collection object using the

Create Waveform Collection method and set the

waveforms parameter to that waveform collection. To

allocate memory during the call to this method, set the

waveforms parameter to

(IWaveformCollection< SByte >)null . Note that

this is critically different than setting waveforms to

null , which generates a build error.

IWaveformCollec

tion< SByte >

IVI-4.15: IviDigitizer Class Specification 146 IVI Foundation

Outputs Description Base Type

WaveformArray (C/COM) Buffer into which the acquired waveform is stored. For IVI-

C, this buffer is always user allocated. For IVI-COM, this

buffer may either be user allocated or driver allocated. To

have the driver allocate the buffer, the user passes in a valid

pointer to a NULL SAFEARRAY. Note that this is

critically different than passing in a NULL pointer, which

generates an error. When IVI-COM users pass in a pointer

to a non-NULL SAFEARRAY, the driver fills the user-

allocated array in the same fashion as with IVI-C.

ViInt8[]

ActualRecords (C/COM) Indicates how many records in the acquisition completed

successfully. The arrays ActualPoints ,

FirstValidPoint , InitialXOffset ,

InitialXTimeSeconds and InitialXTimeFraction

have the corresponding first contiguous values valid.

ViInt64

ActualPoints (C/COM) Indicates how many data points were actually retrieved

from the instrument for each completed record. This is an

array of size at least NumRecords or a NULL pointer. For

IVI -C, this array is always user allocated. For IVI-COM,

this buffer may either be user allocated or driver allocated,

with the same rules as for WaveformArray .

ViInt64[]

FirstValidPoint

(C/COM)
Indicates the index of the first valid data point in the output

Data array for each completed record. This value will often

be simply the record index (zero to ActualRecords-1) times

NumPointsPerRecord. However, some digitizer hardware

designs transfer data most efficiently when the data is

aligned with specific memory address boundaries. In those

cases, the hardware may return a few invalid data points at

the beginning of a record. This eliminates the need to shift

the data during the transfer, ensuring maximum data

transfer rates. This is an array of size at least NumRecords

or a NULL pointer. For IVI-C, this array is always user

allocated. For IVI-COM, this buffer may either be user

allocated or driver allocated, with the same rules as for

WaveformArray .

ViInt64[]

InitialXOffset

(C/COM)
The time in relation to the Trigger Event of the first point in

the waveform in seconds. Negative values mean that the

first point in the waveform array was acquired before the

trigger event. This is an array of size at least NumRecords

or a NULL pointer. For IVI-C, this array is always user

allocated. For IVI-COM, this buffer may either be user

allocated or driver allocated, with the same rules as for

WaveformArray .

ViReal64[]

IVI Foundation 147 IVI-4.15: IviDigitizer Class Specification

InitialXTimeSeconds

(C/COM)
Specifies the seconds portion of the absolute time at which

the first data point was acquired. Note that the actual time is

the sum of InitialXTimeSeconds and InitialXTimeFraction.

The time is specified as the sum of two values because a

single double-precision floating-point number does not have

sufficient range and resolution to specify the time. This is

an array of size at least NumRecords or a NULL pointer.

For IVI -C, this array is always user allocated. For IVI-

COM, this buffer may either be user allocated or driver

allocated, with the same rules as for WaveformArray .

ViReal64[]

InitialXTimeFraction

(C/COM)
Specifies the fractional portion of the absolute time at which

the first data point was acquired. Note that the actual time is

the sum of InitialXTimeSeconds and InitialXTimeFraction.

The time is specified as the sum of two values because a

single double-precision floating-point number does not have

sufficient range and resolution to specify the time. This is

an array of size at least NumRecords or a NULL pointer.

For IVI-C, this array is always user allocated. For IVI-

COM, this buffer may either be user allocated or driver

allocated, with the same rules as for WaveformArray .

ViReal64[]

XIncrement (C/COM) The time between points in the acquired waveform in

seconds.

ViReal64

ScaleFactor (C/COM) Scaling factor for the waveform data. ViReal64

ScaleOffset (C/COM) Scaling offset for the waveform data. ViReal64

Return Value (.NET) A waveform collection object with data from the channel.

(In .NET, this is the return value of the method.)

(The IVI -3.2: Inherent Capabilities Specification defines the

IwaveformCollection interface.)

IWaveformCollec

tion< SByte >

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return this additional class-defined status code:

¶ Channel Not Enabled

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

This method can also throw these additional class-defined exceptions:

¶ Channel Not Enabled

IVI-4.15: IviDigitizer Class Specification 148 IVI Foundation

5.3.5 Fetch Multi-Record Waveform Real64

Description

This function operates identically to the Fetch Multi -Record Waveform Int16, with the only difference

being the data type of the returned waveform array. Please see the definition of that function for details.

Note that for this function, after completion each element in the WaveformArray parameter is the actual

sampled voltage in Volts.

.NET Method Prototype

IWaveformCollection<Double>

 Channels [].MultiRecordMeasurement.FetchMultiRecordWaveform (

 Int64 f irstRecord,

 Int64 numberOf Records,

 Int64 offsetWithinRecord,

 Int64 numberOf PointsPerRecord,

 IWaveformCollection<Double> waveforms);

COM Method Prototype

HRESULT Channels.Item(). MultiRecord Measurement.FetchMultiRecordWaveformReal64 (

 [in] __int64 FirstRecord,

 [in] __int64 NumRecords,

 [in] __int64 OffsetWithinRecord,

 [in] __int64 NumPointsPerRecord,

 [in, out] SAFEARRAY(double)* WaveformArray,

 [in, out] __int64 * ActualRecords,

 [in, out] SAFEARRAY(__int64)* ActualPoints,

 [in, out] SAFEARRAY(__int64)* FirstValidPoint,

 [in, out] SAFEARRAY(double)* InitialXOffset,

 [in, out] SAFEARRAY(double)* InitialXTimeSeconds,

 [in, out] SAFEARRAY(double)* InitialXTimeFraction,

 [in, out] dou ble* XIncrement);

C Prototype

ViStatus IviDigitizer_FetchMultiRecordWaveformReal64 (ViSession Vi,

 ViConstString ChannelName,

 ViInt64 FirstRecord,

 ViInt64 NumRecords,

 ViInt64 OffsetWithinRecord,

 ViInt64 NumPointsPerRecord,

 ViInt64 WaveformArraySize,

 ViReal64 WaveformArray[],

 ViInt64* ActualRecords,

 ViInt64 ActualPoints[],

 ViInt64 FirstValidPoint[],

 ViReal64 InitialXOffset[],

 ViReal64 InitialXTimeSeconds[],

 ViRe al64 InitialXTimeFraction[],

 ViReal64* XIncrement);

Parameters

Inputs Description Base Type

Vi (C) Instrument handle. ViSession

ChannelName (C) Name of the channel from which to retrieve the data. ViConstString

FirstRecord Specifies the number of the first record to read. ViInt64

IVI Foundation 149 IVI-4.15: IviDigitizer Class Specification

NumRecords (C/COM)

NumberOfRecords (.NET)

Specifies the number of consecutive records to read. If

NumRecords is greater than 1, this parameter allows

full or partial (if OffsetWithinRecord and

NumPointsPerRecord are specified accordingly) data to

be retrieved from multiple digitizer records in a single

Fetch call. If NumRecords is less than or equal to zero,

an error will be returned.

ViInt64

OffsetWithinRecor d Specifies the start index within the record from which

the data should be retrieved. While normally zero, this

parameter allows users to retrieve partial records. Data

that comes before the OffsetWithinRecord index will

not be retrieved. This is perhaps most useful when

retrieving very large data records because it allows

records to be retrieved in several smaller chunks.

ViInt64

NumPointsPerRecord

(C/COM)

NumberOfPointsPerRecord

(.NET)

Specifies the number of data points per record to return.

This number may be larger than the amount of data

available. Use the ActualPoints parameter to determine

how many data points were returned.

ViInt64

WaveformArraySize (C) Specifies the allocated size of the WaveformArray

buffer, in number of data points. If this value is smaller

than the total number of points to be retrieved, the

driver will fill the waveform buffer as fully as possible

and return the actual number of points retrieved in the

ActualPoints parameter. In IVI-COM it is the driver

that allocates the memory buffer, unless a non-NULL

SAFEARRAY is passed.

ViInt64

waveforms (.NET) A Waveform collection object with a particular

number of waveforms, each with data of a particular

size needed only for reusing waveform object across

reads. The waveform collection memory may be

allocated before calling this method, or during the call

to this method. To allocate memory before calling

this method, create a waveform collection object

using the Create Waveform Collection method and

set the waveforms parameter to that waveform

collection. To allocate memory during the call to this

method, set the waveforms parameter to

(IWaveformCollection<Double>)null . Note

that this is critically different than setting waveforms

to null , which generates a build error.

IWaveformCollec

tion<Double>

IVI-4.15: IviDigitizer Class Specification 150 IVI Foundation

Outputs Description Base Type

WaveformArray (C/COM) Buffer into which the acquired waveform is stored. For

IVI -C, this buffer is always user allocated. For IVI-

COM, this buffer may either be user allocated or driver

allocated. To have the driver allocate the buffer, the

user passes in a valid pointer to a NULL

SAFEARRAY. Note that this is critically different than

passing in a NULL pointer, which generates an error.

When IVI-COM users pass in a pointer to a non-NULL

SAFEARRAY, the driver fills the user-allocated array

in the same fashion as with IVI-C.

ViReal64[]

ActualRecords (C/COM) Indicates how many records in the acquisition

completed successfully. The arrays ActualPoints ,

FirstValidPoint , Ini tialXOffset ,

InitialXTimeSeconds and

InitialXTimeFraction have the corresponding first

contiguous values valid.

ViInt64

ActualPoints (C/COM) Indicates how many data points were actually retrieved

from the instrument for each completed record. This is

an array of size at least NumRecords or a NULL

pointer. For IVI-C, this array is always user allocated.

For IVI-COM, this buffer may either be user allocated

or driver allocated, with the same rules as for

WaveformArray .

ViInt64[]

FirstValidPoint (C/COM) Indicates the index of the first valid data point in the

output Data array for each completed record. This value

will often be simply the record index (zero to

ActualRecords-1) times NumPointsPerRecord.

However, some digitizer hardware designs transfer data

most efficiently when the data is aligned with specific

memory address boundaries. In those cases, the

hardware may return a few invalid data points at the

beginning of a record. This eliminates the need to shift

the data during the transfer, ensuring maximum data

transfer rates. This is an array of size at least

NumRecords or a NULL pointer. For IVI-C, this array

is always user allocated. For IVI-COM, this buffer may

either be user allocated or driver allocated, with the

same rules as for WaveformArray .

ViInt64[]

InitialXOffset (C/COM) The time in relation to the Trigger Event of the first

point in the waveform in seconds. Negative values

mean that the first point in the waveform array was

acquired before the trigger event. This is an array of

size at least NumRecords or a NULL pointer. For IVI-

C, this array is always user allocated. For IVI-COM,

this buffer may either be user allocated or driver

allocated, with the same rules as for WaveformArray .

ViReal64[]

IVI Foundation 151 IVI-4.15: IviDigitizer Class Specification

InitialXTimeSeconds

(C/COM)
Specifies the seconds portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the sum

of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time. This is an array of

size at least NumRecords or a NULL pointer. For IVI-

C, this array is always user allocated. For IVI-COM,

this buffer may either be user allocated or driver

allocated, with the same rules as for WaveformArray .

ViReal64[]

InitialXTimeFraction

(C/COM)
Specifies the fractional portion of the absolute time at

which the first data point was acquired. Note that the

actual time is the sum of InitialXTimeSeconds and

InitialXTimeFraction. The time is specified as the sum

of two values because a single double-precision

floating-point number does not have sufficient range

and resolution to specify the time. This is an array of

size at least NumRecords or a NULL pointer. For IVI-

C, this array is always user allocated. For IVI-COM,

this buffer may either be user allocated or driver

allocated, with the same rules as for WaveformArray .

ViReal64[]

XIncrement (C/COM) The time between points in the acquired waveform in

seconds.

ViReal64

Return Value (.NET) A waveform collection object with data from the

channel.

(In .NET, this is the return value of the method.)

(The IVI -3.2: Inherent Capabilities Specification

defines the IwaveformCollection interface.)

IWaveformCollec

tion<Double>

Return Values

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return this additional class-defined status code:

¶ Channel Not Enabled

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

This method can also throw these additional class-defined exceptions:

¶ Channel Not Enabled

5.4 IviDigitizerMultiRecordAcquisition Behavior Model

The IviDigitizerMultiRecordAcquisition extension group follows the same behavior model as the

IviDigitizerBase capability group described in Section 4.4, IviDigitizerBase Behavior Model.

5.5 IviDigitizerMultiRecordAcquisition Compliance Notes

For a specific driver to comply with the IviDigitizerMultiRecordAcquisition extension, it shall be

compliant with the IviDigitizerBase capability group and it shall implement all of the functions listed in

this section.

IVI-4.15: IviDigitizer Class Specification 152 IVI Foundation

6. IviDigitizerBoardTemperature Extension Group

6.1 IviDigitizerBoardTemperature Overview

The IviDigitizerBoardTemperature extension group supports digitizers with the ability to report the

temperature of the device as a whole.

6.2 IviDigitizerBoardTemperature Attributes

The IviDigitizerBoardTemperature extension group defines the following attributes:

¶ Board Temperature

¶ Temperature Units

This section describes the behavior and requirements of each attribute. The actual value for each attribute

ID is defined in Section 31, IviDigitizer Attribute ID Definitions.

IVI Foundation 153 IVI-4.15: IviDigitizer Class Specification

6.2.1 Board Temperature

Data Type Access Applies To Coercion High Level Functions

ViReal64 RO N/A None Query Board Temperature (IVI-C only)

.NET Property Name

Temperature.BoardTemperature

COM Property Name

Temperature.BoardTemperature

C Constant Name

IVIDIGITIZER_ATTR_BOARD_TEMPERATURE

Description

Indicates the temperature of the entire board. The units are governed by the Temperature Units attribute.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 154 IVI Foundation

6.2.2 Temperature Units

Data Type Access Applies To Coercion High Level Functions

ViInt32 R/W N/A None Configure Temperature Units (IVI-C only)

.NET Property Name

Temperature.Units

.NET Enumeration Name

TemperatureUnits

COM Property Name

Temperature.Units

COM Enumeration Name

IviDigitizerTemperatureUnitsEnum

C Constant Name

IVIDIGITIZER_ATTR_TEMPERATURE_UNITS

Description

Specifies the temperature units returned by the Board Temperature and the Channel Temperature attributes.

Defined Values

Name Description

 Language Identifier

Celsius Temperature values returned from the digitizer are in degrees Celsius.

 .NET TemperatureUnits.Celsius

C IVIDIGITIZER_VAL_CELSIUS

COM IviDigitizerTemperatureUnitsCelsius

Fahrenheit Temperature values returned from the digitizer are in degrees Fahrenheit.

 .NET TemperatureUnits.Fahrenheit

C IVIDIGITIZER_VAL_FAHRENHEIT

COM IviDigitizerTemperatureUnitsFahrenheit

Kelvin Temperature values returned from the digitizer are in degrees Kelvin.

 .NET TemperatureUnits.Kelvin

C IVIDIGITIZER_VAL_KELVIN

COM IviDigitizerTemperatureUnitsKelvin

IVI Foundation 155 IVI-4.15: IviDigitizer Class Specification

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 156 IVI Foundation

6.3 IviDigitizerBoardTemperature Functions

The IviDigitizerBoardTemperature extension group defines the following function:

¶ Configure Temperature Units (IVI-C only)

¶ Query Board Temperature (IVI-C only)

This section describes the behavior and requirements of this function.

IVI Foundation 157 IVI-4.15: IviDigitizer Class Specification

6.3.1 Configure Temperature Units (IVI-C Only)

Description

This function is used to configure the temperature units returned by the Board Temperature and the

Channel Temperature attributes.

.NET Method Prototype

N/A

(Use the Temperature.BoardTemperature property)

COM Method Prototype

N/A

(Use the Temperature.BoardTemperature property)

C Prototype

ViStatus IviDigitizer_ConfigureTemperatureUnits (ViSession Vi,

 ViInt32 Units);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

Units Temperature units to be used by the Board Temperature and

Channel Temperature attributes. This value sets the

Temperature Units attribute. See the attribute description for

more details.

ViInt32

Defined Values for the Units parameter

Name Description

 Language Identifier

Celsius Temperature values returned from the digitizer are in degrees Celsius.

 C IVIDIGITIZER_VAL_CEL SIUS

Fahrenheit Temperature values returned from the digitizer are in degrees Fahrenheit.

 C IVIDIGITIZER_VAL_FAHRENHEIT

Kelvin Temperature values returned from the digitizer are in degrees Kelvin.

 C IVIDIGITIZER_VAL_KELVIN

Return Values (C)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI-4.15: IviDigitizer Class Specification 158 IVI Foundation

6.3.2 Query Board Temperature (IVI-C Only)

Description

This function is used to query the temperature of the entire board. The units are governed by the

Temperature Units attribute.

.NET Method Prototype

N/A

(Use the Temperature.BoardTemperature property)

COM Method Prototype

N/A

(Use the Temperature.BoardTemperature property)

C Prototype

ViStatus IviDigitizer_QueryBoardTemperature (ViSession Vi,

 ViReal64* Temperature);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

Outputs Description Base Type

Temperature Returns whether the current temperature of the

entire board . The units are governed by the

Temperature Units attribute.

ViReal64

Return Values (C)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI Foundation 159 IVI-4.15: IviDigitizer Class Specification

6.4 IviDigitizerBoardTemperature Behavior Model

The IviDigitizerBoardTemperature extension group follows the same behavior model as the

IviDigitizerBase capability group described in Section 4.4, IviDigitizerBase Behavior Model.

6.5 IviDigitizerBoardTemperature Compliance Notes

For a specific driver to comply with the IviDigitizerBoardTemperature extension, it shall be compliant with

the IviDigitizerBase capability group and it shall implement all of the attributes and functions listed in this

section.

IVI-4.15: IviDigitizer Class Specification 160 IVI Foundation

7. IviDigitizerChannelFilter Extension Group

7.1 IviDigitizerChannelFilter Overview

The IviDigitizerChannelFilter extension group supports to control the input filter of the digitizer.

7.2 IviDigitizerChannelFilter Attributes

The IviDigitizerChannelFilter extension group defines the following attributes:

¶ Input Filter Bypass

¶ Input Filter Max Frequency

¶ Input Filter Min Frequency

This section describes the behavior and requirements of each attribute. The actual value for each attribute

ID is defined in Section 31, IviDigitizer Attribute ID Definitions.

IVI Foundation 161 IVI-4.15: IviDigitizer Class Specification

7.2.1 Input Filter Bypass

Data Type Access Applies To Coercion High Level Functions

ViBoolean R/W Channel None N/A

.NET Property Name

Channels[].Filter.Bypass

COM Property Name

Channels.Item().Filter.Bypass

C Constant Name

IVIDIGITIZER_ATTR_INPUT_FILTER_BYPASS

Description

Specifies whether or not to bypass the input filter.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 162 IVI Foundation

7.2.2 Input Filter Max Frequency

Data Type Access Applies To Coercion High Level Functions

ViReal64 R/W Channel Up Configure Input Filter

.NET Property Name

Channels[].Filter.MaxFrequency

COM Property Name

Channels.Item().Filter.MaxFrequency

C Constant Name

IVIDIGITIZER_ATTR_INPUT_FILTER_MAX_FREQUENCY

Description

Specifies the maximum input filter frequency. Specifying a value of zero means that the device should be

set to the full bandwidth that the filter can deliver without being bypassed.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 163 IVI-4.15: IviDigitizer Class Specification

7.2.3 Input Filter Min Frequency

Data Type Access Applies To Coercion High Level Functions

ViReal64 R/W Channel Down Configure Input Filter

.NET Property Name

Channels[].Filter.MinFrequency

COM Property Name

Channels.Item().Filter.MinFrequency

C Constant Name

IVIDIGITIZER_ATTR_INPUT_FILTER_MIN_FREQUENCY

Description

Specifies the minimum input filter frequency.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 164 IVI Foundation

7.3 IviDigitizerChannelFilter Functions

The IviDigitizerChannelFilter extension group defines the following function:

¶ Configure Input Filter

This section describes the behavior and requirements of this function.

IVI Foundation 165 IVI-4.15: IviDigitizer Class Specification

7.3.1 Configure Input Filter

Description

This function is used to configure the minimum and maximum input filter frequencies for a specified

channel.

.NET Method Prototype

void Channels[].Filter.Configure (Double minFrequency,

 Double maxFrequency);

COM Method Prototype

HRESULT Channels.Item(). Filter. Configure ([in] double MinFrequency,

 [in] double MaxFrequency);

C Prototype

ViStatus IviDigitizer_ConfigureInp utFilter (ViSession Vi,

 ViConstString ChannelName ,

 ViReal64 MinFrequency ,

 ViReal64 MaxFrequency);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

ChannelName Name of the channel to configure. ViConstString

MinFrequency Specifies the minimum input filter frequency. This value sets

the Input Filter Min Frequency attribute. See the attribute

description for more details.

ViReal64

MaxFrequency Specifies the maximum input filter frequency. This value

sets the Input Filter Max Frequency attribute. See the

attribute description for more details.

ViReal64

Return Values (C/COM)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this method.

IVI-4.15: IviDigitizer Class Specification 166 IVI Foundation

7.4 IviDigitizerChannelFilter Behavior Model

The IviDigitizerChannelFilter extension group follows the same behavior model as the IviDigitizerBase

capability group described in Section 4.4, IviDigitizerBase Behavior Model.

7.5 IviDigitizerChannelFilter Compliance Notes

For a specific driver to comply with the IviDigitizerChannelFilter extension, it shall be compliant with the

IviDigitizerBase capability group and it shall implement all of the attributes and functions listed in this

section.

IVI Foundation 167 IVI-4.15: IviDigitizer Class Specification

8. IviDigitizerChannelTemperature Extension Group

8.1 IviDigitizerChannelTemperature Overview

The IviDigitizerChannelTemperature extension group supports digitizers with the ability to report the

temperature of individual channels.

8.2 IviDigitizerChannelTemperature Attributes

The IviDigitizerChannelTemperature extension group defines the following attributes:

¶ Channel Temperature

This section describes the behavior and requirements of each attribute. The actual value for each attribute

ID is defined in Section 31, IviDigitizer Attribute ID Definitions.

IVI-4.15: IviDigitizer Class Specification 168 IVI Foundation

8.2.1 Channel Temperature

Data Type Access Applies To Coercion High Level Functions

ViReal64 RO Channel None Query Channel Temperature (IVI-C only)

.NET Property Name

Channels[].Temperature

COM Property Name

Channels.Item().Temperature

C Constant Name

IVIDIGITIZER_ATTR_CHANNEL_TEMPERATURE

Description

Indicates the temperature of the channel. The units are governed by the Temperature Units attribute.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 169 IVI-4.15: IviDigitizer Class Specification

8.3 IviDigitizerChannelTemperature Functions

The IviDigitizerChannelTemperature extension group defines the following function:

¶ Query Channel Temperature (IVI-C only)

This section describes the behavior and requirements of this function.

IVI-4.15: IviDigitizer Class Specification 170 IVI Foundation

8.3.1 Query Channel Temperature (IVI-C Only)

Description

This function is used to query the temperature of a specific channel. The units are governed by the

Temperature Units attribute.

.NET Method Prototype

N/A

(use the Channels[].Temperature property)

COM Method Prototype

N/A

(use the Channels.Item() .Temperature property)

C Prototype

ViStatus IviDigitizer_Q ueryChannel Temperature (ViSession Vi,

 ViConstString ChannelName,

 ViReal64* Temperature);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

ChannelName Name of the channel from which to read the temperature. ViConstString

Outputs Description Base Type

Temperature Returns whether the current temperature of the entire board.

The units are governed by the Temperature Units attribute.

ViReal64

Return Values (C)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

IVI Foundation 171 IVI-4.15: IviDigitizer Class Specification

8.4 IviDigitizerChannelTemperature Behavior Model

The IviDigitizerChannelTemperature extension group follows the same behavior model as the

IviDigit izerBase capability group described in Section 4.4, IviDigitizerBase Behavior Model.

8.5 IviDigitizerChannelTemperature Compliance Notes

For a specific driver to comply with the IviDigitizerChannelTemperature extension, it shall be compliant

with the IviDigitizerBase capability group and it shall implement all of the attributes and functions listed in

this section.

IVI-4.15: IviDigitizer Class Specification 172 IVI Foundation

9. IviDigitizerTimeInterleavedChannels Extension Group

9.1 IviDigitizerTimeInterleavedChannels Overview

The IviDigitizerTimeInterleavedChannels extension group supports digitizers with the ability to combine

two or more channels to achieve higher sample rates and/or greater memory depth. This is accomplished by

routing the signal from a single physical input connector to multiple analog-to-digital converters, with each

ADCôs sample clock offset from the others. (The other physical input connectors are not used.)

Some multichannel digitizers offer the possibility of interleaving their channels: by combining the A/D

converter and/or memory from several channels, interleaving allows the user to multiply the maximum

sampling rate when not all input channels are required to be active. The number of channels available for

signal acquisition is correspondingly reduced.

Digitizers usually support interleaving of 2 or 4 channels. Combining 2 channels doubles the maximum

sampling rate and/or the maximum number of samples that can be acquired on one single input channel.

The active channel may or may not be user selectable. For digitizers featuring segmentable memory

(multiple records/segments per acquisition), depending on the design of the digitizer the maximum number

of records may or may not increase when combining channels.

When combining channels, users should be careful to specify the desired sample rate. Since sample rate is

defined separately, combining channels does not automatically change the sample rate ï it only changes the

maximum available sample rate.

9.2 IviDigitizerTimeInterleavedChannels Attributes

The IviDigitizerTimeInterleavedChannels extension group defines the following attributes:

¶ Time Interleaved Channel List

¶ Time Interleaved Channel List Auto

This section describes the behavior and requirements of each attribute. The actual value for each attribute

ID is defined in Section 31, IviDigitizer Attribute ID Definitions.

IVI Foundation 173 IVI-4.15: IviDigitizer Class Specification

9.2.1 Time Interleaved Channel List

Data Type Access Applies To Coercion High Level Functions

ViString R/W Channel None Configure Time Interleaved Channel List (IVI-C only)

.NET Property Name

Channels[].TimeInterleavedChannelList

COM Property Name

Channels.Item(). TimeInterleavedChannelList

C Constant Name

IVIDIGITIZER_ATTR_ TIME_INTERLEAVED_CHANNEL_LIST

Description

This attribute is used to combine this channel with one or more other channels to achieve higher effective

sampling rates and/or greater memory depth. The string provided here specifies which channels should

operate in combined mode with the current channel. This attribute is a comma-separated list of one or more
channel names. Users may specify either physical or virtual repeated capability identifiers in this list. An

empty string or VI_NULL can be used to indicate that no channels should be combined (or that none are

currently combined, in the case of a query).

Setting this attribute on any channel disables automatic combined mode (Combined Channels Auto is set to

False). Querying this attribute when Combined Channels Auto is True returns the list of channels (if any)

the digitizer automatically combined with the current channel to satisfy the sample rate requirements. If a

channel name specified in the list is not recognized, the driver generates the Unknown Channel Name error.

If a channel name specified in the list is not enabled, this attribute generates the error Channel Not Enabled.

Setting this attribute on a channel designates that channel as the one on which subsequent channel-based

operations should be made. This includes configuration operations such as setting the Vertical Coupling,

Vertical Offset, and Vertical Range attributes, It also includes fetch and read operations.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 174 IVI Foundation

9.2.2 Time Interleaved Channel List Auto

Data Type Access Applies To Coercion High Level Functions

ViBoolean R/W N/A None N/A

.NET Property Name

Acquisition.TimeInterleavedChannelListAuto

COM Property Name

Acquisition. TimeInterleavedChannelList Auto

C Constant Name

IVIDIGITIZER_ATTR_ TIME_INTERLEAVED_CHANNEL_LIST_AUTO

Description

Specifies whether or not the instrument should automatically combine enabled channels to satisfy user-

specified sample rates. When set to True, the instrument will automatically combine channels to meet the

sample rate requirements specified via the Sample Rate attribute. Use the Time Interleaved Channel List
attribute to query which channels (if any) have been combined.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI Foundation 175 IVI-4.15: IviDigitizer Class Specification

9.3 IviDigitizerTimeInterleavedChannels Functions

The IviDigitizerTimeInterleavedChannels extension group defines the following function:

¶ Configure Time Interleaved Channel List (IVI -C only)

This section describes the behavior and requirements of this function.

IVI-4.15: IviDigitizer Class Specification 176 IVI Foundation

9.3.1 Configure Time Interleaved Channel List (IVI-C Only)

Description

This function is used to combine this channel with one or more other channels to achieve higher effective

sampling rates and/or greater memory depth. Calling this function disables automatic combined mode

(Combined Channels Auto is set to False).

Calling this function on a channel designates that channel as the one on which subsequent channel-based

operations should be made. This includes configuration operations such as setting the Vertical Coupling,

Vertical Offset, and Vertical Range attributes. It also includes fetch and read operations.

.NET Method Prototype

N/A

(use the Channels [] . TimeInterleavedChannelList property)

COM Method Prototype

N/A

(use the Channels.Item(). TimeInterleavedChannelList property)

C Prototype

ViStatus IviDigitizer_Configure TimeInterleavedChannelList (ViSession Vi,

 ViConstString ChannelName ,

 ViConstString ChannelList);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

ChannelName Name of the channel to be combined with those in

ChannelList.

ViConstString

Channel List A comma-separated list of one or more channel names to

combine with the channel specified by ChannelName. This

value sets the Time Interleaved Channel List attribute. See

the attribute description for more details.

ViConstString

Return Values (C)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return this additional class-defined status code:

¶ Channel Not Enabled

IVI Foundation 177 IVI-4.15: IviDigitizer Class Specification

9.4 IviDigitizerTimeInterleavedChannels Behavior Model

The IviDigitizerTimeInterleavedChannels extension group follows the same behavior model as the

IviDigitizerBase capability group described in Section 4.4, IviDigitizerBase Behavior Model.

9.5 IviDigitizerTimeInterleavedChannels Compliance Notes

For a specific driver to comply with the IviDigitizerTimeInterleavedChannels extension, it shall be

compliant with the IviDigitizerBase capability group and it shall implement all of the attributes and

functions listed in this section.

IVI-4.15: IviDigitizer Class Specification 178 IVI Foundation

10. IviDigitizerDataInterleavedChannels Extension Group

10.1 IviDigitizerDataInterleavedChannels Overview

The IviDigitizerDataInterleavedChannels extension group supports digitizers with the ability to interleave

data samples from different channels into a single set of data. This feature allows data from multiple

digitizer channels to be retured by the digitizer in a single data retrieval operation. The retrieved data

values from each combined channel are interleaved so that all data points taken at a single instant follow

one another before the next time samples begin.

This feature is most common in digitizers that are designed to read I/Q data. The óIô signal is attached to

one digitizer channel and the óQô data to another. The channels may be combined using the

IviDigitizerDataInterleavedChannels extension group so that a single data retrieval call returns complex I/Q

data from both channels.

10.2 IviDigitizerDataInterleavedChannels Attributes

The IviDigitizerDataInterleavedChannels extension group defines the following attributes:

¶ Data Interleaved Channel List

This section describes the behavior and requirements of each attribute. The actual value for each attribute

ID is defined in Section 31, IviDigitizer Attribute ID Definitions.

IVI Foundation 179 IVI-4.15: IviDigitizer Class Specification

10.2.1 Data Interleaved Channel List

Data Type Access Applies To Coercion High Level Functions

ViString R/W Channel None Configure Data Interleaved Channel List (IVI-C only)

.NET Property Name

Channels[].DataInterleavedChannelList

COM Property Name

Channels.Item(). DataInterleavedChannelList

C Constant Name

IVIDIGITIZER_ATTR_ DATA_INTERLEAVED_CHANNEL_LIST

Description

This attribute is used to combine this channel with one or more other channels to interleave the returned

data. The string provided here specifies which channels should operate in combined mode with the current

channel. This attribute is a comma-separated list of one or more channel names. Users may specify either
physical or virtual repeated capability identifiers in this list. An empty string or VI_NULL can be used to

indicate that no channels should be combined (or that none are currently combined, in the case of a query).

If a channel name specified in the list is not recognized, the driver generates the Unknown Channel Name

error. If a channel name specified in the list is not enabled, this attribute generates the error Channel Not

Enabled.

Setting this attribute on a channel designates that channel as the one on which subsequent fetch and read

operations should be made. Fetch and read operations will return the data from multiple channels, so care

should be taken to ensure that sufficient memory is allocated.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

IVI-4.15: IviDigitizer Class Specification 180 IVI Foundation

10.3 IviDigitizerDataInterleavedChannels Functions

The IviDigitizerDataInterleavedChannels extension group defines the following function:

¶ Configure Data Interleaved Channel List (IVI -C only)

This section describes the behavior and requirements of this function.

IVI Foundation 181 IVI-4.15: IviDigitizer Class Specification

10.3.1 Configure Data Interleaved Channel List (IVI-C Only)

Description

This attribute is used to combine this channel with one or more other channels to interleave the returned

data. The string provided here specifies which channels should operate in combined mode with the current

channel. This attribute is a comma-separated list of one or more channel names. Users may specify either

physical or virtual repeated capability identifiers in this list. An empty string or VI_NULL can be used to

indicate that no channels should be combined (or that none are currently combined, in the case of a query).

If a channel name specified in the list is not recognized, the driver generates the Unknown Channel Name

error. If a channel name specified in the list is not enabled, this attribute generates the error Channel Not

Enabled.

Setting this attribute on a channel designates that channel as the one on which subsequent fetch and read

operations should be made. Fetch and read operations will return the data from multiple channels, so care

should be taken to ensure that sufficient memory is allocated.

.NET Method Prototype

N/A

(use the Channels[].DataInterleavedChannelList property)

COM Method Prototype

N/A

(use the Channels.Item().DataInterleavedChannelList property)

C Prototype

ViStatus IviDigitizer_ConfigureDataInterleavedChannelList (ViSession Vi,

 ViConstString ChannelN ame,

 ViConstString ChannelList);

Parameters

Inputs Description Base Type

Vi Instrument handle. ViSession

ChannelName Name of the channel to be combined with those in

ChannelList.

ViConstString

ChannelList A comma-separated list of one or more channel names to

combine with the channel specified by ChannelName. This

value sets the Data Interleaved Channel List attribute. See

the attribute description for more details.

ViConstString

Return Values (C)

The IVI-3.2: Inherent Capabilities Specification defines general status codes that this function can return.

This function can also return this additional class-defined status code:

¶ Channel Not Enabled

IVI-4.15: IviDigitizer Class Specification 182 IVI Foundation

10.4 IviDigitizerDataInterleavedChannels Behavior Model

The IviDigitizerDataInterleavedChannels extension group follows the same behavior model as the

IviDigitizerBase capability group described in Section 4.4, IviDigitizerBase Behavior Model.

10.5 IviDigitizerDataInterleavedChannels Compliance Notes

For a specific driver to comply with the IviDigitizerDataInterleavedChannels extension, it shall be

compliant with the IviDigitizerBase capability group and it shall implement all of the attributes and

functions listed in this section.

IVI Foundation 183 IVI-4.15: IviDigitizer Class Specification

11. IviDigitizerReferenceOscillator Extension Group

11.1 IviDigitizerReferenceOscillator Overview

The IviDigitizerReferenceOscillator extension group supports digitizers with the ability to use an external

reference oscillator.

11.2 IviDigitizerReferenceOscillator Attributes

The IviDigitizerReferenceOscillator extension group defines the following attributes:

¶ Reference Oscillator External Frequency

¶ Reference Oscillator Output Enabled

¶ Reference Oscillator Source

This section describes the behavior and requirements of each attribute. The actual value for each attribute

ID is defined in Section 31, IviDigitizer Attribute ID Definitions.

IVI-4.15: IviDigitizer Class Specification 184 IVI Foundation

11.2.1 Reference Oscillator External Frequency

Data Type Access Applies To Coercion High Level Functions

ViReal64 R/W N/A None Configure Reference Oscillator

.NET Property Name

ReferenceOscillator.ExternalFrequency

COM Property Name

ReferenceOscillator.ExternalFrequency

C Constant Name

IVIDIGITIZER_ATTR_REFERENCE_OSCILLATOR_EXTERNAL_FREQUENCY

Description

Specifies the frequency of the external signal which is used as a frequency reference. This value is used

only if the Reference Oscillator Source attribute is set to External. The units are Hertz.

.NET Exceptions

The IVI -3.2: Inherent Capabilities Specification defines general exceptions that may be thrown, and

warning events that may be raised, by this property.

