Interchangeable
Virtual
lnstruments

IVI-3.18: IVI.NET Utility
Classes and Interfaces
Specification

February 26, 2016 Edition
Revision 1.3

Important Information

The IVI.NET Utility Classes and Interfaces specification is authored by the 1VI Foundation member
companies. For a vendor membership roster list, please visit the VI Foundation web site at
www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation
through the web site at www.ivifoundation.org.

Warranty

The IVI Foundation and its member companies make no warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The 1VI Foundation and its member companies shall not be liable for errors contained herein or for incidental

or consequential damages in connection with the furnishing, performance, or use of this material.
Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 2 IVI Foundation

http://www.ivifoundation.org/

Table

of

Contents

Table of Contents

REVISION HISTOIY ..uiiiiiii e et e e e e e eee 8
1. Summary Of CONTENTSuiiiii e 9
O =T = (T 1oL PR 9
1.2 IMPIEMENTALION ...ttt bbbt b bbb bbbt bbbt bbbt b et ns 9
2. PrecisionDateTime StrUCT ..o e 10
P2 RO AV T Y/ 1=V U 10
2.1.1 Relationship to .NET Framework DateTime StruCt...........cccvvvevieerivire e 10
2.1.2 Relationship t0 LXISYNC......c.cviiiiiieiiie ettt ettt e 10
2.1.3 INNEIIEA INTEITACES ...oiieveiee ettt ettt ettt e e ettt e e s sttt e e s sab e e e s sabbeeesbaeeessabeeessreeeesas 10
2.2 PreciSionDateTime CONSIIUCIOIS.eiiicriiieietiee s it ie e e ettt e s eteeesseteeessesbeeessbeeeesssbesesssteeessabessesssbesssssseeeesns 12
2.3 PreciSioNDAtETIME PrOPEITIESeiitirieieiteieeesie ettt ettt bbbttt bbb et nees 15
2.3 L DAY ..ttt R R R R Rt ar e E et 16
2.3.2 DAY OF WEEK ... bbbt 17
2.3.3 DAY OF YR i ittt et e e e et e te e reenreeae s 18
PR R 01 0TSy Tot o] o [0 [T 19
NG T X (0T T TR 20
2.3.6 ISNOTATIIMIE ...ttt e e ettt e e et e e s bt e e s e ettt e e s et e e e s sbbeessabbeesessbaseessabaeesasbaneens 21
G T A 111 [T 22
2.3.8 IMAX VAIUB.......oveeeeeeie ettt ettt e e e s ettt e e ettt e s ettt e e seateeesastbeessaaeeeessabeeessraneeias 23
2.3.9 IMHICIOSECONM.eeeieeee ettt ettt ettt e e ettt e e et a e e e s eaa e e e e eateeessabeeeeseabeeesssbeeessseeeessareeessbaneeias 24
2.3.10 IMIITISECONM ...ttt ettt et e sttt e e ettt e e s et eeseab e e e sesbeeessaaaeeessareeessraneeias 25
PR TN 1Y T LU TR 26
2.3 12 MM VAIUE ..ttt ettt e e sttt e e ettt e e s et et e e s eaeeeesasbeeessaaeeessabeeessraneesas 27
R TR R I 1Y, 1o 01 1 o F TR 28
PR T8 AN =T Lo 7= Tod o 3 To SRR 29
R R N[0/ T2 4TI TROTTTRORR 30
P0G T K N[0 T RS ETT RO 31
R TN A = oo Yoy Tot o] o To [T 32
PR TR ST T-ToTo) (o TR 33
2.3.19 SecoNdS FraCtionalccooiviiiiiiiie ettt e et e e st e e s s bae e e s sab e e e s sraeeeens 34
2.3.20 Seconds SINCE EPOCHovviiiiiiiiee e 35
T R - | R 36
2.4 PreciSioNDateTime IMEINOUSoci ettt e et e e st e e s et e e st e e s sabeeeeateeessareeeessreeesaireeeesas 37
P Vo [« TSSO PRRORR 38
2.4.2 AQUDAYSccveveneitiieeetee ettt bbb bbbttt ne e 39

IVI1-3.18: .NET Utility Classes and Interfaces Specification 3 IVI Foundation

B B Ao [0] =T 01 (0 FY=T o] T £ 40

244 AGUHOUIS ...ttt ettt bbbt b e bRt bbbt ne bt ene st 41
2.4.5 AQAMICIOSECONScvvvieirietiries ettt sttt bbb b et b e ne bt ene st 42
2.4.6 ADAMITIISECONUScuvieiiiiie ettt s sbe e s be e beeabeerbesbeesteesbeesteesnens 43
2.4.7 AQUMINULESooivieie ettt e bt e et e et e st e s te e s be e sbe e beeneesabeeseesbsesteesbeesteesnens 44
2.4.8 AQAMONTNS ...ttt te e s b e e te b e b e ab e s tr e te e reenreereas 45
2.4.9 AQANANOSECONMSveveitiiieetieteeie ettt sttt sttt e e seesbesbesbe et e e se e st e e e sbesbesbesbeaneaneas 46
2.4.10 AQAPICOSECONAScuvieiiiiiieciieitee st este ettt e et e st e et e e ste et e s besaeesaeesbeesbeebeesbeessestsesteesteesransnens 47
o N [0 K=ol o [0 [SRR USSR 48
P A Ao [0 A OSSPSR 49
P e O 1 0] o T PSP PRSP OPR PP 50
2.4. 14 COMPAIETO c.vveeiiie ittt sttt sttt st et e st e st e e s st e st e e s st e e eabe e et e e e be e e beeebe e e bes 51
A 0 USSR 52
2.4.08 SUDIIACEcviveiectiiteieie ettt bbbt bbbttt ne st 53
2.4.07 TODBEETIME 1.vveetiterietiites ettt bttt s bt s bbb bbb s bbb e e ne st b ene st 54
2.4.18 TODECIMALccviiiicieee ettt et be e sbe e s beeaeeabeetbesbeesteesbeesteesneas 55
2.4.09 TOLOCAITIME. ..ttt ettt e e e s re e s be e sbe e s beebeeabeetbesbeesbeesbeesbeesnens 56
2.8.20 TOSTANG +.vevtteieetet etttk h b b s bbbt bbbt e bt bbbt ne s 57
2.4.21 TOUNIVEISAITIME .oooiieiiiic ittt ettt ettt s be e sbe e be e beenbeeabesbsesbeesbeesteesnens 60
2.4.22 1CoNVErtiDIE. TODAIETIMEviiiieiiee ettt be e be e ebe e be e et e beesteeste s 61
2.4.23 1CoNVertible. TODECIMANc.oiiiiiieieieeee ettt 62
W [O 0\ =T] o] (30 o]] T S URR 63
2.4.25 ODJECLEQUAIS ...ttt et e e ta e reenreeae s 64
2.4.26 ODjJeCt.GEtHASNCOUEeoiieeiee et et e st e ta e teeseeene s 65
W A @ o1 Tot B 03] T PSSRSO 66
2.5 PrecisionDateTime OPEIALOISciieiieieiieseeseesteesteeste et e st e steeste e teateaseessaesreesseesteesseensesseesseesreeseeeneens 67
2.5.1 + (AAAItION OPEIALOT) ...euviviitiiirietiiteeics ettt b bbbttt bbb 68
2.5.2 - (SUDLrACLiON OPEIALOI) ...c.eiviieiiiteiieieite ettt sttt sttt e 69
2.5.3 == (EQUANILY OPEIALOT)euiiiitirieiiiteietis ettt 71
2.5.4 1= (EQUAITLY OPEIALOI) ...ttt ettt bbbttt sb 72
2.5.5 >= (Greater Than Or EQual TO OPEIator)coeirerieiiienieisinieise et 73
2.5.6 <= (Less Than Or EqQUal TO OPEIALOr)curuerieirierieiisienieisie sttt 74
2.5.7 > (Greater Than OPEIALOr)cccueieeieeieeieeteete s e s e se e e e s e e e e sreesreesbeebeanbesrsesseesraesreas 75
2.5.8 < (LSS Tan OPEIALOF)vecvveiieeiieeiteeite ettt et e st e st et e et e e e s e e s e e sseesbeesteesbeenbeenbessaesseesseeseeas 76
3. PrecisionTimeSpan ClasS......ccooiviiiiiiiiees e 77
B OVEIVIEW ...ttt ettt ettt ettt et e et e s te e s be e s beeebeeabeeateebseebe e beesbeesbeesbesaeeebeeabeeabeenbeenbeetbeebeeabeebeenreas 77
S L L DELAIS ..ttt b e ehe e be e beebe et e rbeetaeabaeares 77
3.1.2 Relationship to .NET Framework TimeSpan StrUCEcccoeveiiiineiniieec e, 77
3.1.3 Relationship t0 LXISYNC.....ccuiiieiie ettt ettt st be e sbe e s et et e sneeneeas 77
3. 1.4 INNEIIEA INTEITACES ..ottt bbbttt sb e bbb eneas 77
3.2 PrecisionTimeSPan CONSITUCLONScviiiiiieiieiee st esteerte et e st ste e teeae e s saestaeste e beenbeenbessaesraestaeseeeneeas 79
3.3 PrecisionTimeSPaN PrOPEITIESccvciviiiiiie e see sttt te et e st et ste e te e e e e e sraeste e be et e enbessaesraestaeseeeneeas 81
TR TN B T OO SOV 82
3.3.2 FEMEOSECONMS.eveeeeeee sttt te ettt sttt e e st e te s te st e se e st e ee st e neesaeebenseeneeseenseneesnenreaneaneas 83
BTG TG I 011] SRS 84
3.3 A MAX VAIUB.....cviict ettt ettt ettt ettt e ettt e s te e s be e ebe e beebe et e etteebbeebeeebeeeteeareas 85
BT TSI 1V o] (01T oL SRS 86
3.3.6 MIITISECONAScvi ettt et ettt be e e be e beebe e st e ettesbbesbeesbeesbeesnean 87
B3 IVIINULES ...ttt ettt et e et e e b e et e e be e be et beeaaesteesbeesbeeabeebeenbeenbeetbesbeesbaentees 88
.38 MIN VAIUE ...ttt e e st e s te e st e e te et e eabeentesteesteenreenteene s 89
KRGS I NN - LT 7= Tot] o SO OSPSR 90
TR 01 O I ol 1 T=Tol] o LSOO SOSS 91
TR 00 I 1T 3 Lo SO OSUSR 92
3.3.12 SECONUSFIACLIONALc.viiiieiiie et be et e e e e et e teesteesaeeneas 93

IVI1-3.18: .NET Utility Classes and Interfaces Specification 4 IVI Foundation

3.3.13 SECONASINIEGIAL....c..eiviieiieeciieeec ettt e e ae e nrenneeneas 94

KT TN o 1| Y OSSPSR 95
B.3.L5 TOAIHOUIS ...ttt ettt e ne st 96
3.3.16 TOLAIMITIISECONMSeeviiieeieiieie ettt bbbttt sb et sae st sneeneas 97
3.3 L7 TOLAIMINULES ...t sttt sttt bbbt e be e st et et et saesbesneeneas 98
30318 TOLAISECONMS. ...ttt sttt sttt b e sb et sbe et e s e e st et et e b saesbesreaneas 99
TR TN 174 (o OSSR 100
3.4 PrecisionTimeSPan MELNOUS.........coiiiiiiiee ettt 101
K 1 Ao o OSSOSO 102
KR 0] 1 1] o L TP O PP PPR PR 103
KR N 0] 111 oL 1 £ I o I PP PP TP P PPR PR 104
I 0 B 0 =1 o] o OO UP PR 105
BAD EQUAIS.....ecuecieeeice ettt re e et et e tenreare e e enaenen 106
KR Gl (0] 41 T\ PP PP PPR PR 107
AT FIOMHOUIS ...ttt en e r e r e r e e e areens 108
3.4.8 FIOMMICTOSECONMSveviieieieiietete sttt sttt sttt ettt sb et et st e et e seesaesbesbeebeene e 109
3.4.9 FIOMMIITISECONMSeoveiiiiecieiee et sttt a et sresreene e 110
3410 FrOMIMINUEESevveie ettt sttt sttt re e e et sbesbeebeeteeneentestesaesbesteeneeneans 111
3.4.11 FrOMNGNOSECONS. ... veviiiearierieieie st st st eteeeeee e seestestesreeseaeestesbesbesseaseeseenseseessestessessessens 112
3.4.12 FrOMPICOSECONMS .. veuveviieeiiesieiesie st sttt e eee et ste st besteese et e stesbesbesbeeteeseeneeseessesbeseesseenens 113
R I B (1 ST oo o LRSS 114
B4 LA MUILIPIY ottt sttt ettt b e bbbt n et et ne s 115
KR R N (=0 - LR P PP PPR PR 116
BUALLB PIUS .ottt bbbt R R bbbt r e ne 117
KT A TT 1 T APPSO US PR SRP 118
KRR T I 15 1 o ST 119
34,19 TOTIMESPAN ...ttt ettt b et b bbbt b et bbb bbbt b bbb sbe s 121
3.4.20 1CONVErtiDIE. TODOUDIEccueevieiie sttt st 122
3.4.21 1CONVEITIDIE. TOSIINGcvvitiieitee bbb 123
3.4.22 ODJECELEQUAIS ...t 124
3.4.23 ObJECt.GEtHASNCOUEocuiiiiiieiieiic e 125
34,24 ODJECETOSIIING ... eveiteeeieete ettt b bbbt b et b bbbt be e 126
3.5 PrecisionTimeSPaN OPEIALOISccviiieieeiteeiesieseeseesteesteeste et e stsestaestaesteesteasaessaesseesaeesteenbeensennsenseeses 127
3.5.1 + (Unary Addition OPEIAtOr)ceccveiiiiieiee et e et ste et neesraenas 128
3.5.2 - (Unary SubtraCtion OPEIAtOr)ccuviveiieiieieesieste st se e ste e te et teeste e aesae e sre e 129
e I (e (o 1 To T @] o T=T =1 (0]) ISR 130
3.5.4 - (SUDLraCtioN OPEIALOI)civeeiiieie et st et e e st e steesteebeenaesnneanes 131
3.5.5 % (MUItiplication OPEIAtOr)cccvciiecie ettt ettt re e nns 132
3.5.6 == (EQUAlILY OPEIALOI)cueiuieeiiitiitiiet sttt bbbt 133
3.5.7 1= (EQUAITLY OPEIALOI) ...c.eiuiitireeieitiiteeet sttt bbb bbbt 134
3.5.8 >= (Greater Than Or EQual TO OPEIator)ccoueirerieirieiiirienieiesie e 135
3.5.9 <= (Less Than Or EqUal TO OPEIALOr)cucurueiririeieiirieieiesiesieiesie e 136
3.5.10 > (Greater Than OPEIALOr)cuverieirieieirie et bbbt 137
3.5.11 < (LeSS Than OPEIAOr) ..ueiveeiieeieeie et e st ste et te e s ste e sae et e e e s e st e staesteebeenaesnneanes 138

4. Common Properties and Methods of Waveform and Spectrum

Interfaces 139

4.1 OVEIVIBW ...ttt sttt b et h bbbt b e s b e st b e e e e st e bt e e e st e bt e b s e ekt e b e e ekt n bt ekt s b et ebenb et et e et e e ebe e 139

4.2 How to use Waveform and SPECIIUM TYPESc.oviiiiiiirieieie ettt sttt sre et eene e 139
4.2.1 The Location of the Waveform or Spectrum in the data arrayccccecevevvvneneinenncnnen, 139
4.2.2 Methods that return a Waveform or SPeCtrUumccoeiverciieneineneese e 140

4.2.2.1 Time Axis Properties for Waveforms..........cccooeciiieieciiei et 141
4.2.3 Methods or properties that receive a Waveform or Spectrum..........ccccocvvervineneicieneennen, 142
4.2.4 SCAIEA AITAY GALA ... ceiieiietiiteere bbbttt e 143

IVI1-3.18: .NET Utility Classes and Interfaces Specification 5 IVI Foundation

4.2.5 General Requirements regarding IWaveform and I1Spectrum interfaces............c.ccocvvevrnennns 144

4.2.6 DAta AITAY TYPES c.veiitii ittt ettt sttt et e e sbe et et et e e sbe e st e e sbe e e st bt e sbeeesbbeesbbeenbbeenbaeenbbeens 144

4.3 Waveform and Spectrum ComMON PrOPEITIES........viviieieerieiesiesese e reese e ste e e e e e sre e e sreens 145
O TN 1 1 OO OO RSRPRSP 146

4.3.2 CAPACILY ...tttk b bbb bbbt b et e 147

4.3.3 ContainSINVAlIAEIEMENT.........coiiiiiiie et 148

4.3.4 ContainSOUtOTRANGEEIEMENL........c.ciiiiiiiiic e 149

4.3.5 ENdTime (WaVefOrmm tYPES) ..cvoverieiitirieisie ettt bbbt 150

4.3.6 FIrStValidPOINT........oiiiiie ettt sttt sbe b sneeneas 151

4.3.7 FrequencyStep (SPECLIUM TYPES) c.viviieieieieeeeieestes e stesteseeseeee e stesrestesresnaeseesseseesresresneanens 152

4.3.8 Start Frequency (SPECITUM LYPES).....eiueierrieeeeiestestestesteseeeeeeseestesrestesresseesaesseseesressesneasens 153

4.3.9 Stop Frequency (SPECLIUM LYPES) ..cveiveieirrieereiesiestestestesteeseeeessestesressesseeseeseesseseeseessesseases 154

4.3.10 IntervalPerPoint (WaVefOrM tYPES) ...ccvivieereiesiese ettt st eneas 155

O TN O 7 OO OSSOSOV PRSP 156

A.3.12 SCAIE.....cuiieeieiecte et Ee bbbttt b e 157

4.3.13 StartTime (WaVvefOorm tYPES)coiiiiiiieirieer e 158

4.3.14 TotalTime (WaVETOrmM LYPES)ooviiiiiriiieiriees bbb 159

A.3.15 TTIOGEITIIMIE ..ottt bbbtk b ekt b et b bbbt 160

4.3.16 ValiAPOINTCOUNLovviiieiiiceeiieie ettt sttt st st ne et e nee st sresreaneenens 161

4.4 Waveform and Spectrum Common MELNOUScooiiiiiiiiiiec e 162
4.4.1 Configure (WaVETOIM LYPES) .e.veuirieieiirieieisie et 163

4.4.2 Configure (SPECIIUM LYPES) . .uveirieiieesieeiesiesiesieesteesteete s e s e st e ste e te e aeeaessaesneesreesseeseenneans 165

4.4.3 GELAIIEIBMENLS ...ttt bbbttt ettt bbb eneas 167

A48 GEIEIBMENTS ... bbb bbbttt b b neas 168

A4S GBESCAIEU ...t bbb bbbttt bt b eneas 169

A.4.6 PULEIBIMENTS ...ttt bbb bt b bt et ettt bt st sneeneas 170

5. IWaveform<T> INterface.......cccovviiiiiiiiiiieieei e 171
5.1 OVEIVIBW ...tttk b ekttt bbbt b b e h b e R e e b ekt ARt e b £ e h e eh b e e e bt bt e b e e b £ e bt ek e e e et e ebeehenbenreeneas 171
IV NV Y= (0] 4 A R I o (0] o<1 TSP 172
5.3 IWaVeform <T> METOUS.c..oieiiieie bbbttt bbbt eneas 173
6. IMemoryWaveform<T> Interfaceccccoeveviiiiiiii e, 174
8.1 OVBIVIBW ...veeeee ettt tee e ettt ettt e st e st e st e te s te e te e s e em e st e st e be s Re e b e e reemee e e aenbesReeEeeseeneeseeteneeseenteaneanens 174
LT N Y/ o o T =017 (- TP PPRPR 174

6.1.2 BASE INTEITACE.o ittt et bbbttt b bbb 174

6.2 IMemOoryWaveformM<T > PrOPEITIES.......ccveiieii e see ettt ste ettt et te e esraesbeesteenreenre e 175
ST R D T - OSSOSO 176

7. 1Spectrum<T> INterfaCe......coooviiiiiiii e 177
0@ Y -SSP 177
A ST o T=Tod 0] 1 R I e (] o 1= =TSSP 178
7.3 ISPECIUMST S IMEINOMS ...ttt ettt b e bbbttt e et e b b sbeabeeneas 179
8. IMemorySpectrum<T> Interface ..., 180
S TR @ 1Y -SSP 180
ST T T [) - To PR 180

8.2 IMEMOrYSPECIIUM PTOPEITIEScviitiitieiieiieie ettt sttt sttt e e sbe b sbe st sneeneas 181
I R D T - ST P 182

IVI1-3.18: .NET Utility Classes and Interfaces Specification 6 IVI Foundation

9. WaVefOormM<T> ClassSiiiiii e 183
0.1 OVEIVIBW ...ttt bR R R Rt R Rt R et R bt r et n s 183

0.1.1 TYPE PAraMELEr TYPES ..uvieiuieeiitieriiee sttt e st st e site sttt sire e s bt e e e st b e e st e e ssbeessb e e srbeessbeessbeesnbeennes 183

0.1.2 IMplemented INtEITACES.......ccveie it st s reere e e e 183

9.1.3 Implemention LiMItatioNS.........cccoieiiiiesieee st sb e nn e e 183

9.2 WaVETOIM CONSIIUCTOISeuvciiiteieeieiteie ettt sttt sttt bbb se et b e bbb bbb bbbttt b et b b st e 184

9.3 WaVefOrm <T> IMELNOUScuviuiieiiite ettt bbbt bbbttt 186

0.3.1 RESCAIEDALA ...ttt bbbt 187

0.3.2 SCAIEDALAc.vevete ettt e bbbt 188

(O o 1= Tod 4 01 4 R [O = 1 189
10,0 OVEIVIBW ...ttt E bR R e Rt Rt b ekt nn bt n bt ner e 189

10.1.1 Type Parameter TYPESccveviiiriiiiiriiiiieiesi sttt et 189

10.1.2 Implemented INTEITACEScuiviiiiriec s 189

10.1.3 Implemention LimMiItationsccuviiiiiiiiicecree s 189

10.2 SPECLIUM CONSLIUCTONS ...ttt b e r bbbt e e nn b nr e 190

11. Repeated Capability Collection Base Interfaces............cccceeeeennnn. 191
110 OVEIVIBW ...ttt b R R R bRt E et Rt r et nn 191

11.2 llviRepeatedCapabilityCollECtiONST >c.ooiiiiiiee e 192

L1201 COUNT. ..t bbbt r bbb e en e r et 193

11.2.2 TEEIM INUEXET ...tttk bt b e ettt bbbttt b et et e b e b e 194

11.3 llviRepeatedCapabilityldentifiCatioNcoii it 195

LL.3 L INBIMIE .o r b e R R Rt 196

12. LockManager ClasSsS......coovvuiiiiiiiiiceecc e 197
12.1 LOCKMANAGET CONSIIUCTOT ... vttt sttt bbbt bbbttt bttt bbb ne 198

12.2 LockManager LOCK MELNOMoviiiiiiiiese bbb 199

12.3 EXAMPIE USBGE. ... ciiiteieieite ettt sttt et b et b bbb bbb bbb bbbt b e st b b e st be bt et 200

13, ENUMEIALIONS ..ottt e e e e e e eeees 201
L1310 AAULO bbb b bR bR R R R bRt R bbbt bbb bt e b 201

1302 SIOP. .ttt h R bR R bt bbbt bbbttt 201

14. Standard TriggerSource ClassScccoiveiiiiiieiiiiieeeie e 202
15. IVI.NET Utility Classes and Interfaces Exceptions..........c.c..ccc...... 204
15,1 IVEINET EXCEPIIONS ...c.viuiitiitiiiitiite ettt bbb bbb bbbt bbbttt sttt 204

15.1.1 ValidPointCountExceedsCapaCityEXCEPLiONcoviviiiirireieiseeese s 205

15.1.2 DataArray TOOSMAIIEXCEPLIONoviviiiiieiieieiecte e 206

15.1.3 InvalidSpectrumDataTYPEEXCEPLIONc.viuieieieiiie et e 207

15.1.4 InvalidWaveformDataTYPeEXCEPLIONc.oiveiiiiiiiieeiie e s 208

15.1.5 NOtATIMEEXCEPIION ...eeiiiieiee e bbb bbb 209

IVI1-3.18: .NET Utility Classes and Interfaces Specification 7 IVI Foundation

Revision History

This section is an overview of the revision history of the IVI.NET Utility Classes and Interfaces
Specification. Specific individual additions/modifications to the document in draft revisions are
denoted with diff-marks, “|”, in the right hand column of each line of text to which the

change/modification applies.

Table 1. IVI.NET Utility Classes and Interfaces Specification

Revision Number

Date of Revision

Revision Notes

Revision 1.0

June 9, 2010

First approved version

Revision 1.1

October 14, 2010

Changes to Waveform and Spectrum interface and class
descriptions that arose during final implementation and unit
testing.

Revision 1.1

April 15, 2011

Editorial Changes:
Clarify that classes defined in this spec are not guaranteed tg
be thread safe.

Clarify the description of the Data property in
IMemoryWaveform/Spectrum.

Revision 1.1

June 30, 2011

Editorial Changes:
Add the TriggerSources class.

Revision 1.2

March10, 2012

Editorial Changes:
Add three trigger strings to section 14.

Revision 1.2

August 6, 2012

Editorial Changes:

Change references to the
WaveformDataArrayTooSmallException and
SpectrumDataArrayTooSmallException to
DataArrayTooSmallException

Revision 1.2

Dec. 3, 2013\

Editorial Changes:

Change Waveform/Spectrum StartTime and EndTime from
PrecisionDateTime to PrecisionTimeSpan, and document
the semantics. Correct the description of scaled array data.

Revision 1.3

February 26, 2016

Minor Changes:

Add the ScaleData and RescaleData methods to the
IWaveform<T> interface, and by extension to the
Waveform<T> class.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 8 IVI Foundation

1. Summary of Contents

The IVL.NET Utility Classes and Interfaces provide classes, interfaces, and other IVI.NET API
elements that can be used in IVI.NET instrument class APIs and IVI.NET drivers as needed.

The following table summarizes the classes and interfaces described in this document.

Table 1-1. IVI.NET Utility Classes and Interfaces and Intended Users

Class/Interface

Intended Use

PrecisionDateTime

A date/time class with resolution suitable for representing IEEE 1588
times

PrecisionTimeSpan

A time span class with resolution suitable for representing IEEE 1588
times.

IWaveform<T> A representation of a waveform of time domain values.

IMemoryWaveform<T> A representation of a basic waveform that allows for streaming time
domain values.

ISpectrum<T> A representation of a spectrum of frequency domain values.

IMemorySpectrum<T> A representation of a basic spectrum that allows for streaming
frequency domain values.

Waveform<T> An implementation of a waveform of time domain values.

Spectrum<T> An implementation of a spectrum of frequency domain values.

Repeated Capability Base
Interfaces

Interfaces that are extended to create repeated capability collections
and collection members.

Auto & Slope Enumerations

Commonly used enumerations with general use in IVI instrument
classes and specific drivers.

TriggerSource

Standard trigger source strings

1.1 References

Several other documents and specifications are related to this specification. These other related

documents are as follows:

e VI 3.1—Driver Architecture Specification

e VI 3.2—Inherent Capabilities Specification

e VI 3.17—lInstallation Requirements Specification

e VI 3.3—Standard Cross-Class Capabilities Specification

1.2 Implementation

The current installation package for the VI Foundation IVI.NET Shared Components, including
the IVL.NET Utility Classes and Interfaces, is available from the 1VVI Foundation website at
http://www.ivifoundation.org.

All of the VI defined API elements in this specficication are defined in the lvi.Driver namespace.

The VI defined classes in this specficication are not guaranteed to be thread-safe.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 9 IVI Foundation

http://www.ivifoundation.org/

2. PrecisionDateTime Struct

2.1 Overview

Instruments sometimes require an absolute time which exceeds the resolution of the NET
Framework DateTime struct. To address these cases, IVI.NET provides the PrecisionDateTime
class, which provides a level of resolution similar to that defined by the 1\VVI LXI Sync standard.

PrecisionDateTime supports a range of dates from the beginning of the IEEE 1588 epoch 0 (that
is, 1/1/1970) through December 31, 9999. Time is internally represented in seconds since January
1, 1970 (the IEEE 1588 epoch 0). PrecisionDateTime stores date and time with femtosecond
(1.0e-15 second) resolution.

The PrecisionDateTime class is always based on the Gregorian calendar. Time may be UTC time
or local time.

2.1.1 Relationship to .NET Framework DateTime Struct

The PrecisionDateTime class is modeled on the .NET Framework System.DateTime struct. The
primary differences between the two are (1) DateTime only provides resolution to 100
nanoseconds, while PrecisionDateTime provides resolution to 1 femtosecond, and (2) DateTime
can represent dates from 1/1/0001 through 12/31/9999, while PrecisionDateTime can only
represent dates from 1/1/1970 through 12/31/9999.

PrecisionDateTime contains a method, ToDateTime(), that creates a corresponding DateTime
object. While PrecisionDateTime duplicates many useful methods and properties of DateTime
such as the Year, Month, and Day properties, some DateTime properties and methods are best
accessed by using ToDateTime().

Since PrecisionDateTime is targeted at a test and measurement market, it does not try to duplicate
all of the general purpose features of DateTime. For example, PrecisionDateTime does not
support the full variety of DateTime format specifiers, globalization, or serialization, and does not
support the Unspecified DateTimeKind.

2.1.2 Relationship to LXISync

IVI 3.15: IviLxiSync Specification includes techniques that allow instrument operation to be
triggered at given times and for timestamps to be associated with measured data. 1VI 3.15:
IviLxiSync Specification also specifies a particular data format (a pair of double values) that is
used to contain a high-resolution time stamp value. The first double is Time Seconds and the
second is Time Fraction. The sum refers to the time since IEEE 1588 epoch 0. To allow IVI.NET
drivers to interoperate with LXI sync times, the PrecisionDateTime class provides constructors
and properties that represent time with two doubles - Seconds Since Epoch and Seconds
Fractional, but note that the range of years available in PrecisionDateTime is more limited than in
LXISync. This restriction is more theoretical than practical in a test and measurement context.

2.1.3 Inherited Interfaces

The PrecisionDateTime class derives from the following interfaces:

e |Comparable

IComparable<PrecisionDateTime>

IConvertible interface

IEquatable<PrecisionDateTime>

IComparable defines “public int CompareTo(object obj)”. Refer to Section 2.4.14,
CompareTo, for more details.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 10 IVI Foundation

IComparable<PrecisionDateTime> defines “public int CompareTo(PrecisionDateTime other)”.
Refer to Section 2.4.14,CompareTo, for more details.

IEquatable<PrecisionDateTime> defines “public bool Equals(PrecisionDateTime other)”. Refer
to Section 2.4.15, Equals, for more details.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 11 IVI Foundation

2.2 PrecisionDateTime Constructors

Description

PrecisionDateTime has two types of constructors. PrecisionDateTime-based constructors include
a DateTime parameter and, optionally, additional parameters to support additional resolution.

Seconds-based constructors include one or more parameters that represent the number of seconds
since the beginning of the IEEE 1588 epoch (that is, the total number of seconds since 1/1/1970),
to femtosecond resolution.

Description — DateTime-based Constructors

The basic PrecisionDateTime based constructors take only a .NET Framework DateTime
parameter. Since the DateTime class only supports a resolution of 100 nanoseconds, there is an
overload that takes a DateTime parameter and Double parameter of additional seconds. The
double allows for femtosecond resolution. If the resulting date is greater than 12/31/9999, the
constructor throws an exception.

The new PrecisionDateTime object has the same DateTimeKind as the DateTime parameter, with
the exception that Unspecified time is coerced to Local time.

.NET Prototypes — DateTime-based Constructers
public PrecisionDateTime (DateTime dateTime)

public PrecisionDateTime (DateTime dateTime,
Double deltaSeconds)

Description — Seconds-based Constructors

Seconds-based constructors all take one or two parameters, where the parameter units are seconds
since the beginning of the IEEE 1588 epoch (that is, the total number of seconds since 1/1/1970).
If the total number of seconds results in a date beyond 12/31/9999, the constructor throws an
exception.

If necessary, the result is rounded to the nearest Femtosecond. Results that are exactly exactly .5
femtoseconds from a valid whole femtosecond are rounded up.

The constructors that take doubles secondsSinceEpoch and secondsFractional as
parameters accept both a secondsSinceEpoch parameter, which may optionally include a
fractional part, and an secondsFractional parameter between 0.0 and 1.0, and adds the two
together to get the correct date and time. While setting the secondsSinceEpoch parameter to a
non-integer is not encouraged, this behavior avoids throwing an exception when the data can be
interpreted in a meaningful way.The DateTimeKind may be explicitly defined as UTC time, local
time, or unspecified using the overloads that include the kind parameter. Unspecified time is
coerced to Local time.

.NET Prototypes — Seconds-based Constructers
public PrecisionDateTime (Decimal seconds)

public PrecisionDateTime (Decimal seconds,
DateTimeKind kind)

public PrecisionDateTime (Double secondsSinceEpoch,
Double fractionalSeconds)

public PrecisionDateTime (Double secondsSinceEpoch,
Double fractionalSeconds,
DateTimeKind kind)

IVI1-3.18: .NET Utility Classes and Interfaces Specification 12 IVI Foundation

Description — String-based Constructors

The string-based constructor takes one string parameters that indicates the time since 1/1/1970 in

seconds, including the decimal point. If the total number of seconds results in a date beyond
12/31/9999, the constructor throws an error.

If necessary, the result is rounded to the nearest Femtosecond. Results that are exactly exactly .5

femtoseconds from a valid whole femtosecond are rounded up.

The DateTimeKind may be explicitly defined as UTC time, local time, or unspecified using the
overloads that include the kind parameter. Unspecified time is coerced to Local time.

.NET Prototypes — String-based Constructers

public PrecisionDateTime (String timeSinceEpoch)

public PrecisionDateTime (String timeSinceEpoch,

Parameters

DateTimeKind kind)

Input

Description

Data Type

dateTime

A .NET Framework DateTime object that refers to
a date after the beginning of the IEEE 1588 epoch
(that is, after 1/1/1970). The number of ticks (100-
nanosecond intervals) in the DateTime object is
used to initialize the PrecisionDateTime object,
adjusted for the difference in data range.

DateTime

deltaSeconds

The number of seconds to add to the dateTime
object used to initialize the precision date time.
May be negative or positive.

Double

seconds

The number of seconds (including fractional
seconds) since the beginning of the IEEE 1588
epoch (that is, the total number of seconds since
1/1/1970). Must be positive.

Decimal

secondsSinceEpoch

The total number of seconds since the beginning of
the IEEE 1588 epoch (that is, the total number of
seconds since 1/1/1970), rounded to the nearest
second.

Double

fractionalSeconds

A fractional number of seconds (greater than or
equal to 0.0, and less than 1.0) added to the time
represented by 1xiBaseSeconds. This parameter
provides for femtosecond resolution to the right of
the decimal. Resolution finer than femtoseconds
will be rounded. Must be positive.

Double

kind

One of the DateTimeKind values that indicates
whether the date and time specify local time or
Coordinated Universal Time (UTC). The default
value is Local.

DateTimeKind

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.
e An exception will be thrown if a constructor attempts to construct a date before 1/1/1970.
e Anexception will be thrown if a constructor attempts to construct a date beyond 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 13

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTimeKind.htm

e Anexception will be thrown is the values for the seconds parameters are out of range.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 14 IVI Foundation

2.3 PrecisionDateTime Properties

The PrecisionDateTime class defines the following properties:
Day
Day of Week
Day of Year
Femtosecond
Hour
Kind
MaxValue
Microsecond
Millisecond
Minute
MinValue
Month
Nanosecond
e Now
e Picosecond
e Second
e Seconds Fractional
e Seconds Since Epoch
e Year

This section describes the behavior and requirements of each property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 15 IVI Foundation

2.3.1 Day

Data Type

Access

Int32

RO

.NET Prototype
public Int32 Day;

Description

The day of the month represented by this instance, expressed as an integer value between 1 and

31.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

16

IVI Foundation

2.3.2 Day of Week

Data Type

Access

DayOfWeek

RO

.NET Prototype
public DayOfWeek DayOfWeek;

Description

A DayOfileek enumerated constant that indicates the day of the week of this

PrecisionDateTime value.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
o If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

17

IVI Foundation

2.3.3 Day of Year

Data Type Access

Int32 RO

.NET Prototype
public Int32 DayOfYear;

Description

The day of the year represented by this instance, expressed as an integer value between 1 and 366.

.NET Exceptions

The IVI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 18 IVI Foundation

2.3.4 Femtosecond

Data Type

Access

Int64

RO

.NET Prototype
public Int64 Femtosecond;

Description

The femtoseconds component of the date and time represented by this instance, expressed as an

integer value between 0 and 999,999,999,999,999.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

19

IVI Foundation

2.3.5 Hour

Data Type

Access

Int32

RO

.NET Prototype
public Int32 Hour;

Description

The hour component of the date represented by this instance, expressed as an integer value

between 0 and 23.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

20

IVI Foundation

2.3.6 IsNotATime

Data Type Access

Boolean RO

.NET Prototype
public Boolean IsNotATime;

Description
A value that indicates whether the time represented by this instance is an actual time, or NaT (Not
a Time).

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 21 IVI Foundation

2.3.7 Kind

Data Type

Access

DateTimeKind

RO

.NET Prototype
public DateTimeKind Kind;

Description

A value that indicates whether the time represented by this instance is based on local time,

Coordinated Universal Time (UTC), or neither.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

22

IVI Foundation

2.3.8 Max Value

Data Type

Access

PrecisionDateTime

RO, static

.NET Prototype

public static readonly PrecisionDateTime MaxValue;

Description

The largest possible value of PrecisionDateTime. This property is read-only. The value of this
constant is equivalent to 23:59:59.999999999999999, December 31, 9999, exactly one

femtosecond before 00:00:00, January 1, 10000.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

23

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.3.9 Microsecond

Data Type

Access

Int32

RO

.NET Prototype

public Int32 Microsecond;

Description

The microsecond component of the date and time represented by this instance, expressed as an

integer value between 0 and 999,999, rounded.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

24

IVI Foundation

2.3.10 Millisecond

Data Type

Access

Int32

RO

.NET Prototype
public Int32 Millisecond;

Description

The milliseconds component of the date and time represented by this instance, expressed as an

integer value between 0 and 999.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

25

IVI Foundation

2.3.11 Minute

Data Type

Access

Int32

RO

.NET Prototype
public Int32 Minute;

Description

The minute component of the date represented by this instance, expressed as an integer value

between 0 and 59.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

26

IVI Foundation

2.3.12 Min Value

Data Type Access

PrecisionDateTime RO, static

.NET Prototype

public static readonly PrecisionDateTime MinValue;

Description

The smallest possible value of PrecisionDateTime. This property is read-only. The value of this
constant is the beginning of the IEEE 1588 epoch (that is, 00:00:00.000000000000000, January 1,
1970.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 27 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.3.13 Month

Data Type

Access

Int32

RO

.NET Prototype
public Int32 Month;

Description

The month component of the date represented by this instance, expressed as an integer value

between 1 and 12.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

28

IVI Foundation

2.3.14 Nanosecond

Data Type

Access

Int32

RO

.NET Prototype

public Int32 Nanosecond;

Description

The nanosecond component of the date and time represented by this instance, expressed as an
integer value between 0 and 999,999,999, rounded.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

29

IVI Foundation

2.3.15 NotATime

Data Type

Access

PrecisionDateTime

RO, static

.NET Prototype

public static PrecisionDateTime Now;

Description

A PrecisionDateTime instance that represents NaT (Not a Time).

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

30

IVI Foundation

2.3.16 Now

Data Type

Access

PrecisionDateTime

RO, static

.NET Prototype

public static PrecisionDateTime Now;

Description

The precisionDateTime Object that is set to the current date and time on this computer,
expressed as the local time, to DateTime resolution.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

31

IVI Foundation

2.3.17 Picosecond

Data Type

Access

Int64

RO

.NET Prototype

public int Picosecond;

Description

The picosecond component of the date and time represented by this instance, expressed as an
integer value between 0 and 999,999,999,999, rounded.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

32

IVI Foundation

2.3.18 Second

Data Type

Access

Int32

RO

.NET Prototype
public Int32 Second;

Description

The seconds component of the date represented by this instance, expressed as an integer value

between 0 and 59.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

33

IVI Foundation

2.3.19 Seconds Fractional

Data Type Access

Double RO

.NET Prototype

public double SecondsFractional;

Description
The fractional portion (remainder) since the end of the last whole second. The value will always
be greater that or equal to 0 and less than 1.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 34 IVI Foundation

2.3.20 Seconds Since Epoch

Data Type

Access

Double

RO

.NET Prototype

public double SecondsSinceEpoch;

Description

The total number of seconds since the beginning of the IEEE 1588 epoch (that is, the total number
of seconds since 1/1/1970), rounded. The value does not have a fractional part. For the fractional
part of the total number of seconds since the beginning of the IEEE 1588 epoch, see the Seconds

Fractional property.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
o If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

35

IVI Foundation

2.3.21 Year

Data Type

Access

Int32

RO

.NET Prototype
public Int32 Year;

Description

The year component of the date represented by this instance, expressed as an integer value

between 1970 and 9999, inclusive.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
e If this instance of PrecisionDateTime is NotATime, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

36

IVI Foundation

2.4 PrecisionDateTime Methods

The PrecisionDateTime class defines the following methods:
Add
Add Days
Add Femtoseconds
Add Hours
Add Microseconds
Add Milliseconds
Add Milliseconds
Add Minutes
Add Months
Add Nanoseconds
Add Picoseconds
Add Seconds
Add Years
e Compare
e CompareTo
e Subtract
e ToDateTime
e ToDecimal
e TolocalTime
e ToString
e ToUniversalTime

The PrecisionDateTime class implements the following methods from the inherited IConvertible
interface:

e |IConvertible.GetTypeCode

e |Convertible.ToDateTime

e |Convertible.ToString

The PrecisionDateTime class overrides the following methods:
e Object.Equals
e Object.GetHashCode
e Object. ToString

This section describes the behavior and requirements of each of the above methods.

The PrecisionDateTime class does not implement other methods and properties from the inherited
IConvertible interface because they do not return meaningful results. They return
System.InvalidCastException, and are not otherwise documented in this specification.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 37 IVI Foundation

2.4.1 Add

Description
Adds the value of the specified PrecisionTimeSpan or TimeSpan to the value of this instance.
If this instance is set to Not a Time, the method returns Not a Time.
This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototypes
public PrecisionDateTime Add(PrecisionTimeSpan pts)

public PrecisionDateTime Add(TimeSpan ts)

Parameters
Input Description Data Type
pts A PrecisionTimeSpan that contains the interval | PrecisionTimeSpan
to add.
ts A TimeSpan that contains the interval to add. | TimeSpan
Output Description Data Type
return value A PrecisionDateTime whose value is the sum of PrecisionDateTime
the date and time represented by this instance
and the time interval represented by pts or ts,
respectively. If this instance is set to Not a
Time, the method returns Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

e An exception will be thrown if an operation attempts to construct a date earlier than 1/1/1970 or later
than 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 38 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_TimeSpan.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.2 AddDays

Description
Adds the specified number of days to the value of this instance.

The days parameter is the number of 24-hour periods to add. The fractional part of days is the
fractional part of a day. For example, 4.5 is equivalent to 4 days, 12 hours, 0 minutes, 0 seconds, 0
milliseconds, and O ticks.

If this instance is set to Not a Time, the method returns Not a Time.

This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototype

public PrecisionDateTime AddDays (Double days)

Parameters
Input Description Data Type
days A number of whole and fractional days. The Double
parameter can be negative or positive.
Output Description Data Type
return value A PrecisionDateTime whose value is the sum of PrecisionDateTime
the date and time represented by this instance
and the time interval represented by days. If
this instance is set to Not a Time, the method
returns Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

e An exception will be thrown if an operation attempts to construct a date earlier than 1/1/1970 or later
than 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 39 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.3 AddFemtoseconds

Description

Adds the specified number of femtoseconds to the value of this instance.

A femtosecond is 1.0e-15 second.

If this instance is set to Not a Time, the method returns Not a Time.

This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototype

public PrecisionDateTime AddFemtoseconds (Int64 femtoseconds)

Parameters
Input Description Data Type
femtoseconds A number of whole femtoseconds. The Into4
parameter can be negative or positive.
Output Description Data Type
return value A PrecisionDateTime whose value is the sum of PrecisionDateTime
the date and time represented by this instance
and the time interval represented by
femtoseconds. If this instance is set to Not a
Time, the method returns Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

e An exception will be thrown if an operation attempts to construct a date earlier than 1/1/1970 or later

than 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

40

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.4 AddHours

Description

Adds the specified number of hours to the value of this instance.

If this instance is set to Not a Time, the method returns Not a Time.

This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototype

public PrecisionDateTime AddHours (Double hours)

Parameters
Input Description Data Type
hours A number of whole and fractional hours. The Double
parameter can be negative or positive.
Output Description Data Type
return value A PrecisionDateTime whose value is the sum off PrecisionDateTime
the date and time represented by this instance
and the time interval represented by hours. If
this instance is set to Not a Time, the method
returns Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

¢ An exception will be thrown if an operation attempts to construct a date earlier than 1/1/1970 or later

than 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

41

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.5 AddMicroseconds

Description

Adds the specified number of microseconds to the value of this instance.

A microsecond is 1.0e-6 second.

If this instance is set to Not a Time, the method returns Not a Time.

This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototype

public PrecisionDateTime AddMicroseconds (Double microseconds)

Parameters
Input Description Data Type
microseconds A number of whole and fractional Double
microseconds. The parameter can be negative of
positive.
Output Description Data Type
return value A PrecisionDateTime whose value is the sum of PrecisionDateTime
the date and time represented by this instance
and the time interval represented by
microseconds. If thisinstance is set to Not a
Time, the method returns Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

¢ An exception will be thrown if an operation attempts to construct a date earlier than 1/1/1970 or later

than 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

42

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.6 AddMilliseconds

Description

Adds the specified number of milliseconds to the value of this instance.

A millisecond is 1.0e-3 second.

If this instance is set to Not a Time, the method returns Not a Time.

This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototype

public PrecisionDateTime AddMilliseconds (Double milliseconds)

Parameters
Input Description Data Type
milliseconds A number of whole milliseconds. The parametej Double
can be negative or positive.
Output Description Data Type
return value A PrecisionDateTime whose value is the sum of PrecisionDateTime
the date and time represented by this instance
and the time interval represented by
milliseconds. If this instance is set to Not a
Time, the method returns Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

e An exception will be thrown if an operation attempts to construct a date earlier than 1/1/1970 or later

than 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

43

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.7 AddMinutes

Description

Adds the specified number of minutes to the value of this instance.

If this instance is set to Not a Time, the method returns Not a Time.

This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototype

public PrecisionDateTime AddMinutes (Double minutes)

Parameters
Input Description Data Type
minutes A number of whole and fractional minutes. The| Double
parameter can be negative or positive.
Output Description Data Type
return value A PrecisionDateTime whose value is the sum off PrecisionDateTime
the date and time represented by this instance
and the time interval represented by minutes.
If this instance is set to Not a Time, the method
returns Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

e An exception will be thrown if an operation attempts to construct a date earlier than 1/1/1970 or later

than 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

44

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.8 AddMonths

Description

This method calculates the resulting month and year, taking into account leap years and the
number of days in a month, then adjusts the day part of the resulting PrecisionDateTime object. If
the resulting day is not a valid day in the resulting month, the last valid day of the resulting month
is used. For example, March 31st + 1 month = April 30th. The time-of-day part of the resulting

PrecisionDateTime object remains the same as this instance.

If this instance is set to Not a Time, the method returns Not a Time.

This method does not change the value of this PrecisionDateTime. Instead, a new

PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototype

public PrecisionDateTime AddMonths (Int32 months)

Parameters
Input Description Data Type
months A number of whole and fractional months. The | Int32
parameter can be negative or positive.
Output Description Data Type
return value A PrecisionDateTime whose value is the sum of PrecisionDateTime
the date and time represented by this instance
and the time interval represented by months. If
this instance is set to Not a Time, the method
returns Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

e An exception will be thrown if an operation attempts to construct a date earlier than 1/1/1970 or later

than 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

45

IVI Foundation

ms-help://MS.MSDNQTR.v90.en/fxref_system/html/ba1e6bdf-6174-3b81-0419-a7c98ebf1383.htm
ms-help://MS.MSDNQTR.v90.en/fxref_system/html/ba1e6bdf-6174-3b81-0419-a7c98ebf1383.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.9 AddNanoseconds

Description
Adds the specified number of nanoseconds to the value of this instance.
A nanosecond is 1.0e-9 second.
If this instance is set to Not a Time, the method returns Not a Time.

This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototype

public PrecisionDateTime AddNanoseconds (Int64 nanoseconds)

Parameters
Input Description Data Type
nanoseconds A number of whole nanoseconds. The Into4
parameter must be positive.
Output Description Data Type
return value A PrecisionDateTime whose value is the sum of PrecisionDateTime
the date and time represented by this instance
and the time interval represented by
nanoseconds. If this instance is set to Not a
Time, the method returns Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.
e An exception will be thrown if the resulting date would be beyond 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 46 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.10 AddPicoseconds

Description
Adds the specified number of picoseconds to the value of this instance.
A nanosecond is 1.0e-12 second.
If this instance is set to Not a Time, the method returns Not a Time.

This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototype

public PrecisionDateTime AddPicoseconds (Int64 picoseconds)

Parameters
Input Description Data Type
picoseconds A number of whole picoseconds. The parameter| Int64
must be positive.
Output Description Data Type
return value A PrecisionDateTime whose value is the sum off PrecisionDateTime
the date and time represented by this instance
and the time interval represented by
picoseconds. If this instance is set to Not a
Time, the method returns Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.
e An exception will be thrown if the resulting date would be beyond 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 47 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.11 AddSeconds

Description

Adds the specified number of seconds to the value of this instance. If necessary, the result is
rounded to the nearest Femtosecond. Results that are exactly exactly .5 femtoseconds from a valid
whole femtosecond are rounded up.

If this instance is set to Not a Time, the method returns Not a Time.

This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

If the seconds parameter is a Decimal or a Double, the fractional part is the fractional part of a
second, and any resolution beyond femtosecond resolution is rounded. For example,

4.53945761103247 is equivalent to 4 seconds and 539457611032470 femtoseconds.
0.00000061103247123 is equivalent to 0 seconds and 611032471 femtoseconds.
0.00000061103247199 is equivalent to 0 seconds and 611032472 femtoseconds.

.NET Prototype
public PrecisionDateTime AddSeconds (Double seconds)

public PrecisionDateTime AddSeconds (Int64 seconds)

Parameters
Input Description Data Type
seconds A number of seconds. The parameter must be | Double
positive.
seconds A number of whole seconds. The parameter Int64
must be positive.
Output Description Data Type
return value A PrecisionDateTime whose value is the sum off PrecisionDateTime
the date and time represented by this instance
and the time interval represented by seconds. If
this instance is set to Not a Time, the method
returns Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.
e Anexception will be thrown if the resulting date would be beyond 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 48 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.12 AddYears

Description
Adds the specified number of years to the value of this instance.

This method calculates the resulting year taking into account leap years. The month and time-of-
day part of the resulting PrecisionDateTime object remains the same as this instance.

If this instance is set to Not a Time, the method returns Not a Time.

This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototype

public PrecisionDateTime AddYears (Int32 years)

Parameters
Input Description Data Type
years A number of whole and fractional months. The | Int32
parameter can be negative or positive.
Output Description Data Type
return value A PrecisionDateTime whose value is the sum of PrecisionDateTime
the date and time represented by this instance
and the time interval represented by years. If
this instance is set to Not a Time, the method
returns Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

e Anexception will be thrown if a operation attempts to construct a date earlier than 1/1/1970 or later
than 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 49 IVI Foundation

ms-help://MS.MSDNQTR.v90.en/fxref_system/html/ba1e6bdf-6174-3b81-0419-a7c98ebf1383.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.13 Compare

Description

Compares two instances of PrecisionDateTime and returns an indication of their relative values.

PrecisionDateTime objects, are compared using their UTC time equivalents.

.NET Prototype

public static int Compare (PrecisionDateTime pdtl,

PrecisionDateTime pdt2)
Parameters
Input Description Data Type
pdtl The first PrecisionDateTime. PrecisionDateTime
pdt2 The second PrecisionDateTime. PrecisionDateTime
Output Description Data Type

return value

A signed number indicating the relative values
of pdtl and pdt2.

If the return value is less than zero, then pdtl
falls before pdt2.

If the return value is equal to zero, then pdtl
and pdt2 are the same date and time.

If the return value is greater than zero, then pdtl,
falls after pdt2.

If both pdtl and pdt2 are NaT (Not a Time), the

return value is zero.

Int32

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.
o If either pdtl or pdt2 is NotATime, but not both, this method throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 50

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.14 CompareTo

Description

Compares this instance to a specified PrecisionDateTime object and returns an indication of their
relative values.

PrecisionDateTime objects are compared using their UTC time equivalents.

Any instance of PrecisionDateTime, regardless of its value, is considered greater than a null
reference.

.NET Prototype
public int CompareTo (PrecisionDateTime pdt)

public int CompareTo (object obj)

Parameters
Input Description Data Type
other A PrecisionDateTime object to compare. PrecisionDateTime
obJ A boxed PrecisionDateTime object to compare,| Object
or a null reference.
Output Description Data Type
return value A signed number indicating the relative values | Int32

of this instance and pdt.

If the return value is less than zero, then this
instance falls before pdt.

If the return value is equal to zero, then this
instance and pdt are the same date and time.

If the return value is greater than zero, then this
instance falls after pdt, or pdt is a null reference
If both this instance and pdt are NaT (Not a
Time), the return value is zero.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

o If either this instance or pdt is NotATime, but not both, this property throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 51 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.15 Equals

Description

This method returns true if this instance is the same instance as pdt.

.NET Prototype

public override bool Equals (PrecisionDateTime pdt)

Parameters

Output

Description

Data Type

pdt

A PrecisionDateTime.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

52

IVI Foundation

2.4.16 Subtract

Description

Subtracts the value of the specified PrecisionTimeSpan or TimeSpan from the value of this
instance.

This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototype
public PrecisionDateTime Subtract (PrecisionTimeSpan pts)

public PrecisionDateTime Subtract (TimeSpan ts)

Parameters
Input Description Data Type
pts A PrecisionTimeSpan that contains the interval | PrecisionTimeSpan
to subtract.
ts A TimeSpan that contains the interval to TimeSpan
subtract.
Output Description Data Type
return value A PrecisionDateTime whose value is the date | PrecisionDateTime
and time represented by this instance less the
time interval represented by pts or ts,
respectively.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.
e An exception will be thrown if a operation attempts to construct a date earlier than 1/1/1970 or later
than 12/31/9999.
e If this instance of PrecisionDateTime is NotATime, this method throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 53 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_TimeSpan.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.17 ToDateTime

Description

A new DateTime is returned whose value is is the value of this instance of PrecisionDateTime,
rounded to the nearest 100 nanoseconds.! The DateTimeKind for the new DateTime is the same

as for this instance of PrecisionDateTime

.NET Prototype

public DateTime ToDateTime ()

Parameters
Output Description Data Type
return value A PrecisionDateTime whose value is the date | DateTime

and time represented by this instance with
femtoseconds rounded to the nearest 100
nanoseconds.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

o If this instance of PrecisionDateTime is NotATime, this method throws the Not A Time exception.

! Rounding down insures that a valid DateTime object can (in theory, at least) be constructed from this

instance of PrecisionDateTime.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

54

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.18 ToDecimal

Description

A new Decimal is returned whose value is is the value of this instance of PrecisionDateTime in

seconds, with resolution to the nearest femtosecond.

.NET Prototype

public Decimal ToDecimal ()

Parameters
Output Description Data Type
return value A decimal number that represents the number of DateTime

seconds since the IEEE 1588 began (Jan. 1,

1970).

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

o If this instance of PrecisionDateTime is NotATime, this method throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

55

IVI Foundation

2.4.19 TolLocalTime

Description

A new PrecisionDateTime is returned whose value is is the value of this instance of
PrecisionDateTime converted to local time (if needed). If DateTimeKind is unspecified in this
instance, it is treated as local time.

.NET Prototype

public PrecisionDateTime ToLocalTime ()

Parameters
Output Description Data Type
return value A PrecisionDateTime whose value is the date PrecisionDateTime

and time represented by this instance, converted
to local time (if needed).

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.
o If this instance of PrecisionDateTime is NotATime, this method throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 56 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.20 ToString

Description
Converts the value of the current PrecisionDateTime object to its equivalent string representation.

In most cases, this string will be equivalent to this.ToDateTime () . ToString (), with the
addition of fractional seconds to femtosecond resolution whenever long times are used.

The format parameter is a PrecisionDateTime format string, which may be a single standard
PrecisionDateTime format specifier as defined in the first table below, or a format string
composed of custom PrecisionDateTime format specifier as defined in the second table below.

The following subset of standard DateTime format specifiers is allowed for PrecisionDate Time:

"d" Short date.

"t Short time.

T Long time.

"g" General date / short time.

"G" General / long time (default).

"s" Sortable.

"u" Universal sortable (invariant, valid only for UTC times).

Any string that is not in the list above is interpreted as a custom PrecisionDateTime format string.

A custom PrecisionDateTime format string consists of one or more custom PrecisionDateTime
format specifiers, and that format string defines the text representation of a PrecisionDate Time
object that is produced by a formatting operation.

The following subset of custom DateTime format specifiers is allowed for PrecisionDateTime:

Years "yyyy" | Represents the year as a four digit number.

"M Represents the month as a number from 1 through 12. A single-digit
month is formatted without a leading zero.

Months]

"MM" | Represents the month as a number from 01 through 12. A single-
digit month is formatted with a leading zero.

"d" Represents the day of the month as a number from 1 through 31. A

5 single-digit day is formatted without a leading zero.

ays

"dd" Represents the day of the month as a number from 01 through 31. A
single-digit day is formatted with a leading zero.

"h" Represents the hour as a number from 1 through 12, that is, the hour
as represented by a 12-hour clock. A single-digit hour is formatted
without a leading zero.

Hours "hh" Represents the hour as a number from 01 through 12, that is, the
hour as represented by a 12-hour clock. A single-digit hour is
formatted with a leading zero.

"H" Represents the hour as a number from 0 through 23, that is, the hour
as represented by a 24-hour clock that counts the hours since

IVI1-3.18: .NET Utility Classes and Interfaces Specification 57 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

midnight. A single-digit hour is formatted without a leading zero.

"HH" Represents the hour as a number from 00 through 23, that is, the
hour as represented by a 24-hour clock that counts the hours since
midnight. A single-digit hour is formatted with a leading zero.

Represents the minutes as a number from 0 through 59. A single-
digit minute is formatted without a leading zero.

Minutes . .
Represents the minutes as a number from 00 through 59. A single-

digit minute is formatted with a leading zero.

Represents the seconds as a number from 0 through 59. A single-
digit second is formatted without a leading zero

"'ss Represents the seconds as a number from 00 through 59. A single-

digit second is formatted with a leading zero.

Seconds
e N ‘f” characters, where N is from 1 to 15, represent the N most
np significant digits of the seconds fraction. Note that this is an
extension of the DateTime format specifier, where N cannot be
"f A greater than 7.

The time separator defined in the current
System.Globalization.Date TimeFormatinfo. TimeSeparator property
that is used to differentiate hours, minutes, and seconds.

A The date separator defined in the current
System.Globalization.Date TimeFormatinfo.DateSeparator property
that is used to differentiate years, months, and days.

Quoted string (apostrophe). Displays the literal value of any string
between two apostrophe (*) characters.

Special
P "%cC" Represents the result associated with a custom format specifier "c",
when the custom DateTime format string consists solely of that
custom format specifier. For example, to use the "d" custom format
specifier by itself, specify "%d".

"t Represents the AM or PM indicator.

VA If this instance is UTC time, this displays a “Z”. If this instance is
local time, this displays a “Z” followed by the UTC offset in "-
hh:mm" format.

For any other character, the literal value of the character is copied to the result string, and does not
affect formatting.

If this instance is NaT (Not a Time), the method returns “NaT”, regardless of the format string.

.NET Prototype
public string ToString(string format)

Parameters

Input Description Data Type

format A PrecisionDateTime format string. IFormatProvider

IVI1-3.18: .NET Utility Classes and Interfaces Specification 58 IVI Foundation

Output

Description

Data Type

return value

A string representation of the value of the
current PrecisionDateTime object.

string

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

59

IVI Foundation

2.4.21 ToUniversalTime

Description

A new PrecisionDateTime is returned whose value is is the value of this instance of
PrecisionDateTime converted to universal time (if needed). If DateTimeKind is unspecified in

this instance, it is treated as local time.
If this instance of PrecisionDateTime is NotATime, this method returns Not A Time.
.NET Prototype

public PrecisionDateTime ToUniversalTime ()

Parameters
Output Description Data Type
return value A PrecisionDateTime whose value is the date | PrecisionDateTime

and time represented by this instance, converted
to universal time (if needed).

If this instance of PrecisionDateTime is
NotATime, this method returns Not A Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 60 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.4.22 IConvertible.ToDateTime

Description

A new DateTime is returned whose value is is the value of this instance of PrecisionDateTime.
The DateTimeKind for the new DateTime is the same as for this instance of PrecisionDateTime.

If necessary, the result is rounded to the nearest Femtosecond. Results that are exactly exactly .5
femtoseconds from a valid whole femtosecond are rounded up.

.NET Prototype

DateTime IConvertible.ToDateTime (IFormatProvider provider)

Parameters
Input Description Data Type
provider A format provider_ IFormatProvider
Output Description Data Type
return value A DateTime whose value is the date and time | DateTime
represented by this instance, to 100 nanosecond
resolution.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

o If this instance of PrecisionDateTime is NotATime, this method throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

61

IVI Foundation

2.4.23 IConvertible.ToDecimal

Description

A new Decimal is returned whose value is is the value of this instance of PrecisionDateTime in
seconds, with resolution to the nearest femtosecond.

.NET Prototype

Decimal IConvertible.ToDecimal (IFormatProvider provider)

Parameters
Input Description Data Type
provider A format provider_ IFormatProvider
Output Description Data Type
return value A decimal number that represents the number of Decimal
seconds since the IEEE 1588 began (Jan. 1,
1970).

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.
o If this instance of PrecisionDateTime is NotATime, this method throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

62

IVI Foundation

2.4.24 IConvertible. ToString

Description

Refer to section 2.4.27, Object.ToString for details on the implementation of this method. The
string returned is formatted using the “G” format specifier.

.NET Prototype

string IConvertible.ToString(IFormatProvider provider)

Parameters
Input Description Data Type
provider A format provider_ IFormatProvider
Output Description Data Type
return value A string representation of the value of the string
current PrecisionDateTime object. The string is
formatted usings the “G” format specifier for
precision date/time strings.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 63 IVI Foundation

2.4.25 Object.Equals

Description

This method returns true if this instance is the same instance as obj.

.NET Prototype
public override bool Equals (object ob7j)

Parameters

Output Description Data Type

obj Any .NET object. object

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 64 IVI Foundation

2.4.26 Object.GetHashCode

Description

Returns a hash code for the object.

.NET Prototype

public override int GetHashCode ()

Parameters

Output

Description

Data Type

Return code

The hash code for the object.

int

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

65

IVI Foundation

2.4.27 Object.ToString

Description

Converts the value of the current PrecisionDateTime object to its equivalent string representation
using the default “G” format specifier. Refer to section 2.4.20, ToString, for details.

If this instance is NaT (Not a Time), the method returns “NaT”.

.NET Prototype

public override string ToString()

Parameters
Output Description Data Type
return value A string representation of the value of the string

precision date/time strings.

current PrecisionDateTime object. The string is
formatted usings the “G” format specifier for

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

66

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.5 PrecisionDateTime Operators

The PrecisionDateTime class defines the following operators:

This section describes the behavior and requirements of each operator.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 67 IVI Foundation

2.5.1 + (Addition Operator)

Description
Adds a specified time interval to a specified date and time, yielding a new date and time.
If pdt is set to Not a Time, the operation returns Not a Time.
This method does not change the value of this PrecisionDateTime. Instead, a new
PrecisionDateTime is returned whose value is the result of this operation.

.NET Prototype

public static PrecisionDateTime operator + (PrecisionDateTime pdt,
PrecisionTimeSpan pts)

public static PrecisionDateTime operator + (PrecisionDateTime pdt,
TimeSpan ts)

Parameters
Input Description Data Type
pdt A PrecisionDateTime that contains the date and| PrecisionDateTime
time to be added to.
pts A PrecisionTimeSpan that contains the interval | PrecisionTimeSpan
to add.
ts A TimeSpan that contains the interval to add. | TimeSpan
Output Description Data Type
return value A PrecisionDateTime whose value is the sum off PrecisionDateTime
the date and time represented by pdt and the
time interval represented by pts or ts,
respectively.
If pdt is set to Not a Time, the operation returns
Not a Time.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.
¢ An exception will be thrown if a operation attempts to construct a date earlier than 1/1/1970 or later
than 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 68 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_TimeSpan.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

Description

2.5.2 - (Subtraction Operator)

Subtracts (1) a specified PrecisionTimeSpan or TimeSpan from a specified PrecisionDateTime,

yielding a

new PrecisionDateTime, or (2) a specified PrecisionDateTime or DateTime from a

specified PrecisionDateTime, yielding a PrecisionTimeSpan that is the interval between the two.

If pdt or pdt2 is set to Not a Time, the operation returns Not a Time.

.NET Prototype

public

public

public

public

static PrecisionDateTime operator - (
PrecisionDateTime pdt,
PrecisionTimeSpan pts)

static PrecisionDateTime operator - (
PrecisionDateTime pdt,
TimeSpan ts)

static PrecisionTimeSpan operator - (
PrecisionDateTime pdt,
PrecisionDateTime pdt2

static PrecisionTimeSpan operator - (
PrecisionDateTime pdt,
DateTime dt)

Parameters
Input Description Data Type
pdt A PrecisionDateTime that contains the date and| PrecisionDateTime
time to be subtracted from.
pts A PrecisionTimeSpan that contains the interval | PrecisionTimeSpan
to subtract.
ts A TimeSpan that contains the interval to TimeSpan
subtract.
pdt2 A PrecisionDateTime that contains the date and| PrecisionDateTime
time to subtract.
dt A DateTime that contains the date and time to | DateTime
subtract.
Output Description Data Type

return value

A PrecisionDateTimewhose value is the sum of| PrecisionDateTime
the date and time represented by pdt and the
time interval represented by pts or ts,
respectively.

If pdt is set to Not a Time, the operation returns
Not a Time.

IVI-3.18: .NET Uti

lity Classes and Interfaces Specification 69 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_TimeSpan.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

A PrecisionTimeSpan whose value is the PrecisionTimeSpan
interval between pdt and pdt2 or dt. This value
will be negative if pdt2 > pdt or dt > pdt.

If pdt or pdt2 is set to Not a Time, the operation
returns Not a Time.

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

An exception will be thrown if a operation attempts to construct a date earlier than 1/1/1970 or later
than 12/31/9999.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 70 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.5.3 == (Equality Operator)
Description

Determines whether two specified instances of PrecisionDateTime are equal.

.NET Prototype

public static bool operator ==(PrecisionDateTime pdtl,
PrecisionDateTime pdt2)

Parameters
Input Description Data Type
pdtl A PrecisionDateTime. PrecisionDateTime
pdt2 A PrecisionDateTime. PrecisionDateTime
Output Description Data Type
return value true if pdt1 and pdt2 represent the same date| bool
and time, or if they are both Not a Time;
otherwise, false.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 71 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.5.4 '= (Equality Operator)

Description

Determines whether two specified instances of PrecisionDateTime are not equal.

.NET Prototype

public static bool operator ==(PrecisionDateTime pdtl,
PrecisionDateTime pdt2)

Parameters
Input Description Data Type
pdtl A PrecisionDateTime. PrecisionDateTime
pdt2 A PrecisionDateTime. PrecisionDateTime
Output Description Data Type
return value false if pdt1 and pdt2 represent the same bool
date and time, or if they are both Not a Time;
otherwise, true.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 72 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.5.5 >= (Greater Than Or Equal To Operator)

Description

Determines whether one specified PrecisionDateTime is later than or equal to another specified
PrecisionDateTime.

.NET Prototype

public static bool operator >=(PrecisionDateTime pdtl,
PrecisionDateTime pdt2)

Parameters
Input Description Data Type
pdtl A PrecisionDateTime. PrecisionDateTime
pdt2 A PrecisionDateTime. PrecisionDateTime
Output Description Data Type
return value true if pdt1 and pdt2 represent the same date| bool
and time, or if pdtl is later than pdt2 otherwise,
false.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

e If either pdtl or pdt2, but not both, is NotATime, this method throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 73 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.5.6 <= (Less Than Or Equal To Operator)

Description
Determines whether one specified PrecisionDateTime is earlier than or equal to another specified
PrecisionDateTime.

.NET Prototype

public static bool operator <=(PrecisionDateTime pdtl,
PrecisionDateTime pdt2)

Parameters
Input Description Data Type
pdtl A PrecisionDateTime. PrecisionDateTime
pdt2 A PrecisionDateTime. PrecisionDateTime
Output Description Data Type
return value true if pdt1 and pdt2 represent the same date| bool
and time, or if pdtl is earlier than pdt2
otherwise, false.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.
e If either pdtl or pdt2, but not both, is NotATime, this method throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 74 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.5.7 > (Greater Than Operator)

Description

Determines whether one specified PrecisionDateTime is later than another specified
PrecisionDateTime.

.NET Prototype

public static bool operator > (PrecisionDateTime pdtl,
PrecisionDateTime pdt2)

Parameters
Input Description Data Type
pdtl A PrecisionDateTime. PrecisionDateTime
pdt2 A PrecisionDateTime. PrecisionDateTime
Output Description Data Type
return value true if pdtl is later than pdt2 otherwise, bool
false.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.
e If either pdtl or pdt2 is NotATime, this method throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 75 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

2.5.8 < (Less Than Operator)

Description

Determines whether one specified PrecisionDateTime is earlier than another specified
PrecisionDateTime.

.NET Prototype

public static bool operator <(PrecisionDateTime pdtl,
PrecisionDateTime pdt2)

Parameters
Input Description Data Type
pdtl A PrecisionDateTime. PrecisionDateTime
pdt2 A PrecisionDateTime. PrecisionDateTime
Output Description Data Type
return value true if pdtl is earlier than pdt2 otherwise, bool
false.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.
e If either pdtl or pdt2 is NotATime, this method throws the Not A Time exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 76 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

3. PrecisionTimeSpan Class

3.1 Overview

Instruments sometimes require a time interval which exceeds the resolution of the .NET
FrameworkTimeSpan struct. To address these cases, IVI.NET provides the PrecisionTimeSpan
class, which provides a level of resolution similar to that defined by the IEEE 1588 standard.

3.1.1 Details
PrecisionTimeSpan supports a range of intervals from -1.0e+13 to +1.0e+13 seconds.

The PrecisionTimeSpan Secondsintegral and SecondsFractional properties always return digits to
the left of the decimal point in Secondsintegral and digits to the right of the decimal point as
SecondsFractional according to this convention.

Note that resolution may be lost when converting to other types due to the high precision nature of
the PrecisionTimeSpan class. In particular, properties and methods that convert from
PrecisionTimeSpan to less precise types may result in a loss of resolution.

For values close to zero, the resolution of a PrecisionTimeSpan is the same as the resolution of a
double.

3.1.2 Relationship to .NET Framework TimeSpan Struct

The PrecisionTimeSpan class is modeled on the .NET Framework System.TimeSpan struct. The
primary differences between the two are (1) TimeSpan only provides resolution to 100
nanoseconds, while PrecisionTimeSpan provides resolution smaller than one Femtosecond, and
(2) TimeSpan can only represent intervals as large as Int64.MaxValue ticks, while
PrecisionTimeSpan can represent intervals as large as 1.0e+13 seconds.

Since PrecisionTimeSpan is targeted at a test and measurement market, it does not try to duplicate
all of the general purpose features of TimeSpan. For example, PrecisionTimeSpan does not
support the full variety of TimeSpan format specifiers, globalization, or serialization.

3.1.3 Relationship to LXISync

IVI 3.15: IviLxiSync Specification includes techniques that allow instrument operation to be
triggered at given times and for timestamps to be associated with measured data. 1VI 3.15:
IviLxiSync Specification also specifies a particular data format (a pair of double values) that is
used to contain a high-resolution time stamp value. The first double is Time Seconds and the
second double is Time Fraction. To allow IVI.NET drivers to interoperate with LXI sync times,
the PrecisionTimeSpan class follows a similar model of representing time with two doubles -
Seconds Integral and Seconds Fractional.

3.1.4 Inherited Interfaces

The PrecisionTimeSpan class derives from the following interfaces:
e |Comparable
e |Comparable<PrecisionTimeSpan>
e |Equatable<PrecisionTimeSpan>

IComparable defines “public int CompareTo(object obj)”. Refer to Section 3.4.3, CompareTo, for
more details.

IComparable<PrecisionTimeSpan> defines “public int CompareTo(PrecisionTimeSpan other)”.
Refer to Section 3.4.3, CompareTo, for more details.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 77 IVI Foundation

IEquatable<PrecisionTimeSpan> defines “public bool Equals(PrecisionTimeSpan other)”. Refer
to Section 3.4.5, Equals, for more details.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 78 IVI Foundation

3.2 PrecisionTimeSpan Constructors

Description

PrecisionTimeSpan has two types of constructors. TimeSpan-based constructors include a
TimeSpan parameter and, optionally, additional parameters to support additional resolution.
Seconds-based constructors include one or more parameters that represent the number of seconds
in the interval, to femtosecond resolution.

Description — TimeSpan-based Constructors

TimeSpan-based constructors all take a .NET Framework TimeSpan parameter. Since the
TimeSpan class only supports a resolution of 100 nanoseconds, there is an overload that allows the
user to add fractional seconds. The double allows for femtosecond resolution.

.NET Prototypes — TimeSpan-based Constructors
public PrecisionTimeSpan (TimeSpan span)

public PrecisionTimeSpan (TimeSpan span,
Double deltaSeconds)

Description — Seconds-based Constructors

Seconds-based constructors all take one or two parameters, where the parameter units are seconds.
If the total number of seconds exceeds the range of PrecisionTimeSpan, the constructor throws an
exception.

For the constructor with two double paramaters (secondsintegral and secondsFractional), the
constructor accepts a secondsintegral parameter with a fractional part and a secondsFractional
parameter (that must be between 0.0 and 1.0), and will add the two together to get the correct
interval. While specifying secondslntegral with a fractional part is not encouraged, this behavior
avoids throwing an exception when the data can be interpreted in a meaningful way. The pupose
for using two doubles is to allow greater precision than can be expressed with one double.

.NET Prototypes — Seconds-based Constructors

public PrecisionTimeSpan (Double secondsIntegral,
Double secondsFractional)

public PrecisionTimeSpan (String seconds)

Parameters
Input Description Data Type

span A .NET Framework TimeSpan object. The TimeSpan
number of ticks (100-nanosecond intervals) in the
TimeSpan object is used to initialize the Precision
TimeSpan object.

deltaSeconds The number of seconds to add to the span object Double
used to initialize the precision time span. Must be
positive.

seconds The total number of seconds in the interval. Decimal

seconds The total number of seconds in the interval, String
expressed as a string.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 79 IVI Foundation

secondsIntegral

The number of seconds in the interval. See section
3.1.3, Details for more details.

Double

secondsFractional

A fractional number of seconds (greater than or
equal to 0.0, and less than 1.0) added to the time
represented by 1xiBaseSeconds. This parameter
provides for femtosecond resolution to the right of
the decimal. Resolution finer than femtoseconds
will be rounded.

Double

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

An exception will be thrown if a constructor attempts to construct an interval that is out of range.

An exception will be thrown is the values for the seconds parameters are out of range.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 80

IVI Foundation

3.3 PrecisionTimeSpan Properties

The PrecisionTimeSpan class defines the following properties:

IVI1-3.18: .NET Utility Classes and Interfaces Specification

Days
Femtosecond
Hours

MaxValue
Microseconds
Milliseconds
Minutes
MinValue
Nanoseconds
Picoseconds
Seconds
SecondsFractional
SecondsTotal
TotalDays
TotalHours
TotalMilliseconds
TotalMinutes
TotalSeconds
Zero

This section describes the behavior and requirements of each property.

81

IVI Foundation

3.3.1 Days

Data Type

Access

Int32

RO

.NET Prototype
public Int32 Days;

Description

The days component of the time span represented by this instance, expressed as an integer.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

82

IVI Foundation

3.3.2 Femtoseconds

Data Type

Access

Int64

RO

.NET Prototype

public Int64 Femtoseconds;

Description

The femtosecond component of the time span represented by this instance, expressed as a value
between -999,999,999,999,999 and 999,999,999,999,999.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

83

IVI Foundation

3.3.3 Hours

Data Type Access

Int32 RO

.NET Prototype
public Int32 Hours;

Description
The hours component of the time span represented by this instance, expressed as an integer value
between -23 and 23.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 84 IVI Foundation

3.3.4 Max Value

Data Type

Access

PrecisionTimeSpan

RO, static

.NET Prototype

public static readonly PrecisionTimeSpan MaxValue;

Description

The largest possible value of PrecisionTimeSpan. This property is read-only. The value of this

constant is 1.0e+13 seconds, exactly.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

85

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

3.3.5 Microseconds

Data Type Access

Int32 RO

.NET Prototype

public Int32 Microseconds;

Description
The fractional seconds represented as microseconds for the time span represented by this instance,
expressed as a value between -999,999 and 999,999.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 86 IVI Foundation

3.3.6 Milliseconds

Data Type Access

Int32 RO

.NET Prototype
public Int32 Milliseconds;

Description
The fractional seconds represented as milliseconds for the time span represented by this instance,
expressed as a value between -999 and 999.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 87 IVI Foundation

3.3.7 Minutes

Data Type

Access

Int32

RO

.NET Prototype
public Int32 Minutes;

Description

The minutes component of the time span represented by this instance, expressed as an integer

value between -59 and 59.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

88

IVI Foundation

3.3.8 Min Value

Data Type

Access

PrecisionTimeSpan

RO, static

.NET Prototype

public static readonly PrecisionTimeSpan MinValue;

Description

The smallest possible value of PrecisionTimeSpan. This property is read-only. The value of this

constant is —1.0e+13 seconds, exactly.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

89

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

3.3.9 Nanoseconds

Data Type Access

Int32 RO

.NET Prototype

public Int32 Nanoseconds;

Description
The fractional seconds represented as nanoseconds for the time span represented by this instance,
expressed as a value between -999,999,999 and 999,999,999.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 90 IVI Foundation

3.3.10 Picoseconds

Data Type

Access

Int64

RO

.NET Prototype

public Int64 Picoseconds;

Description

The fractional seconds represented as picoseconds for the time span represented by this instance,

expressed as a value between -999,999,999,999 and 999,999,999,999.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

91

IVI Foundation

3.3.11 Seconds

Data Type

Access

Int32

RO

.NET Prototype
public Int32 Seconds;

Description

The seconds component of the time span represented by this instance, expressed as an integer

value between -59 and 59.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

92

IVI Foundation

3.3.12 SecondsFractional

Data Type

Access

Double

RO

.NET Prototype

public Double SecondsFractional;

Description

A value that represents the fractional portion (remainder) of the total number of seconds in the

interval, expressed as a value between -1 and 1, exclusive.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

93

IVI Foundation

3.3.13 Secondsintegral

Data Type

Access

Double

RO

.NET Prototype
public Double SecondsIntegral;

Description

A value that represents the integer portion of the total number of seconds in the interval. Any
digits to the right of the decimal point are truncated.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

94

IVI Foundation

3.3.14 TotalDays

Data Type

Access

Double

RO

.NET Prototype

public Double TotalDays;

Description

A value that represents the value of the current PrecisionTimeSpan object expressed in whole and

fractional days.

One value of type Double connot represent the full resolution of a PrecisionTimeSpan object. The

full resolution is represented by the Secondslntegral and SecondsFractional properties taken

together.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

95

IVI Foundation

3.3.15 TotalHours

Data Type

Access

Double

RO

.NET Prototype

public Double TotalDays;

Description

A value that represents the value of the current PrecisionTimeSpan object expressed in whole and

fractional hours.

One value of type Double connot represent the full resolution of a PrecisionTimeSpan object. The

full resolution is represented by the Secondslntegral and SecondsFractional properties taken

together.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

96

IVI Foundation

3.3.16 TotalMilliseconds

Data Type

Access

Double

RO

.NET Prototype

public Double TotalDays;

Description

A value that represents the value of the current PrecisionTimeSpan object expressed in whole and

fractional milliseconds.

One value of type Double connot represent the full resolution of a PrecisionTimeSpan object. The

full resolution is represented by the Secondsintegral and SecondsFractional properties taken

together.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

97

IVI Foundation

3.3.17 TotalMinutes

Data Type

Access

Double

RO

.NET Prototype

public Double TotalDays;

Description

A value that represents the value of the current PrecisionTimeSpan object expressed in whole and

fractional minutes.

One value of type Double connot represent the full resolution of a PrecisionTimeSpan object. The

full resolution is represented by the Secondslntegral and SecondsFractional properties taken

together.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

98

IVI Foundation

3.3.18 TotalSeconds

Data Type

Access

Double

RO

.NET Prototype

public Double TotalDays;

Description

A value that represents the value of the current PrecisionTimeSpan object expressed in whole and

fractional seconds.

One value of type Double connot represent the full resolution of a PrecisionTimeSpan object. The

full resolution is represented by the Secondslntegral and SecondsFractional properties taken

together.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

99

IVI Foundation

3.3.19 Zero

Data Type

Access

PrecisionTimeSpan

RO, static

.NET Prototype

public static PrecisionTimeSpan Zero { get }

Description

The PrecisionTimeSpan value that is equivalent to 0.0 seconds.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

100

IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

3.4 PrecisionTimeSpan Methods

The PrecisionTimeSpan class defines the following methods:
Add
Compare
CompareTo
Duration
FromDays
FromHours
FromMicroseconds
FromMilliseconds
FromMinutes
FromNanoseconds
FromPicoseconds
FromSeconds
FromTimeSpan
e Multiply
o Negate
e Subtract
e ToTimeSpan

The PrecisionTimeSpan class overrides the following methods:
e Object.Equals
e Object.GetHashCode
e Object. ToString

This section describes the behavior and requirements of each of the above methods.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 101 IVI Foundation

3.4.1 Add

Description

Adds the value of the specified TimeSpan to the value of this instance.

This method does not change the value of this PrecisionTimeSpan. Instead, a new
PrecisionTimeSpan is returned whose value is the result of this operation.

.NET Prototype

public PrecisionTimeSpan Add(PrecisionTimeSpan pts)

public PrecisionTimeSpan Add (TimeSpan ts)
Parameters
Input Description Data Type
pts A precision time span to be added to the PrecisionTimeSpan
precision time span of the current object.
ts A time span to be added to the precision time | TimeSpan
span of the current object.
Output Description Data Type
Return value A new PrecisionTimeSpan instance that is the | PrecisionTimeSpan
sum of this instance and pts or ts.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

102

IVI Foundation

3.4.2 Compare

Description
Compares two instances of PrecisionTimeSpan and returns an indication of their relative values.

.NET Prototype

public static int Compare (PrecisionTimeSpan ptsl,
PrecisionTimeSpan pts2)

Parameters
Input Description Data Type
ptsl A precision time span. PrecisionTimeSpan
pts2 A precision time span. PrecisionTimeSpan
Output Description Data Type
Return value A signed number indicating the relative values | Int32

of ptsl and pts2.

If the return value is less than zero, then ptsl
falls before pts2.

If the return value is equal to zero, then pts1 and
pts2 are the same date and time.

If the return value is greater than zero, then ptsl
falls after pts2.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 103 IVI Foundation

3.4.3 CompareTo

Description
Compares this instance to a specified PrecisionTimeSpan object and returns an indication of their

relative values. Any instance of PrecisionTimeSpan, regardless of its value, is considered greater
than a null reference.

.NET Prototype

public int CompareTo (PrecisionTimeSpan other)

public int CompareTo (object obj)

Parameters
Input Description Data Type
other A precision time span. PrecisionTimeSpan
obj A boxed PrecisionTimeSpan object to compare,| object
or a null reference.
Output Description Data Type
Return value A signed number indicating the relative values | Int32

of ptsl and pts2.

If the return value is less than zero, then ptsl
falls before pts2.

If the return value is equal to zero, then pts1 and
pts2 are the same date and time.

If the return value is greater than zero, then ptsl
falls after pts2.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 104 IVI Foundation

3.4.4 Duration

Description

Returns the absolute value of this instance. This method does not change the value of this
PrecisionTimeSpan. Instead, a new PrecisionTimeSpan is returned whose value is the result of

this operation.

.NET Prototype

public PrecisionTimeSpan Duration ()

Parameters

Output

Description

Data Type

Return value

A new PrecisionTimeSpan instance that is the
absolute value of this instance.

PrecisionTimeSpan

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

105

IVI Foundation

3.4.5 Equals

Description

Determines whether two specified instances of PrecisionTimeSpan represent the same precision
time span.

.NET Prototype

public override bool Equals (PrecisionTimeSpan other)

Parameters
Input Description Data Type
other A boxed PrecisionTimeSpan object to compare,| PrecisionTimeSpan
or a null reference.
Output Description Data Type
Return value True if this instance and the 'obj' instance Boolean
represent the same precision time span.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 106 IVI Foundation

3.4.6 FromDays

Description

Returns a new PrecisionTimeSpan instance with a length in days equal to the input parameter.

.NET Prototype

public static PrecisionTimeSpan FromDays (Double days)

Parameters
Input Description Data Type
days A number of days. Double
Output Description Data Type
Return value A new PrecisionTimeSpan instance with a PrecisionTimeSpan
length in days equal to the input parameter.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 107 IVI Foundation

3.4.7 FromHours

Description

Returns a new PrecisionTimeSpan instance with a length in hours equal to the input parameter.

.NET Prototype

public static PrecisionTimeSpan FromHours (Double hours)

Parameters
Input Description Data Type
hours A number of hours. Double
Output Description Data Type
Return value A new PrecisionTimeSpan instance with a PrecisionTimeSpan
length in hours equal to the input parameter.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

108

IVI Foundation

3.4.8 FromMicroseconds

Description

Returns a new PrecisionTimeSpan instance with a length in microseconds equal to the input

parameter.

.NET Prototype

public static PrecisionTimeSpan FromMicroseconds (

Double microseconds)

Parameters
Input Description Data Type
microseconds A number of microseconds. Double
Output Description Data Type
Return value A new PrecisionTimeSpan instance with a PrecisionTimeSpan
length in microseconds equal to the input
parameter.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

109

IVI Foundation

3.4.9 FromMilliseconds

Description

Returns a new PrecisionTimeSpan instance with a length in milliseconds equal to the input

parameter.

.NET Prototype

public static PrecisionTimeSpan FromMilliseconds (

Double milliseconds)

Parameters
Input Description Data Type
milliseconds A number of milliseconds. Double
Output Description Data Type
Return value A new PrecisionTimeSpan instance with a PrecisionTimeSpan
length in milliseconds equal to the input
parameter.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

110

IVI Foundation

3.4.10 FromMinutes

Description

Returns a new PrecisionTimeSpan instance with a length in minutes equal to the input parameter.

.NET Prototype

public static PrecisionTimeSpan FromMinutes

(Double minutes)

Parameters
Input Description Data Type
minutes A number of minutes. Double
Output Description Data Type
Return value A new PrecisionTimeSpan instance with a PrecisionTimeSpan
length in minutes equal to the input parameter.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

111

IVI Foundation

3.4.11 FromNanoseconds

Description

Returns a new PrecisionTimeSpan instance with a length in nanoseconds equal to the input

parameter.

.NET Prototype

public static PrecisionTimeSpan FromNanoseconds (

Double nanoseconds)

Parameters
Input Description Data Type
nanoseconds A number of nanoseconds. Double
Output Description Data Type
Return value A new PrecisionTimeSpan instance with a PrecisionTimeSpan
length in nanoseconds equal to the input
parameter.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

112

IVI Foundation

3.4.12 FromPicoseconds

Description

Returns a new PrecisionTimeSpan instance with a length in picoseconds equal to the input

parameter.

.NET Prototype

public static PrecisionTimeSpan FromPicoseconds (

Double picoseconds)

Parameters
Input Description Data Type
picoseconds A number of picoseconds. Double
Output Description Data Type
Return value A new PrecisionTimeSpan instance with a PrecisionTimeSpan
length in picoseconds equal to the input
parameter.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

113

IVI Foundation

3.4.13 FromSeconds

Description

Returns a new PrecisionTimeSpan instance with a length in seconds equal to the input parameter.

.NET Prototype

public static PrecisionTimeSpan FromSeconds (Double seconds)

Parameters
Input Description Data Type
seconds A number of seconds. Double
Output Description Data Type
Return value A new PrecisionTimeSpan instance with a PrecisionTimeSpan
length in seconds equal to the input parameter.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

114

IVI Foundation

3.4.14 Multiply

Description

Multiplies the value of this TimeSpan by an integer. This method does not change the value of this
PrecisionTimeSpan. Instead, a new PrecisionTimeSpan is returned whose value is the result of this

operation.

.NET Prototype

public PrecisionTimeSpan Multiply (Double factor)

Parameters
Input Description Data Type
factor The integer by which this instance is to be Double
multiplied.
Output Description Data Type
Return value A new PrecisionTimeSpan instance that isthe | PrecisionTimeSpan
product of this instance and factor.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

115

IVI Foundation

3.4.15 Negate

Description

Negates this instance. This method does not change the value of this PrecisionTimeSpan. Instead,
a new PrecisionTimeSpan is returned whose value is the result of this operation.

.NET Prototype

public PrecisionTimeSpan Negate ()

Parameters
Output Description Data Type
Return value A new PrecisionTimeSpan instance that is the | PrecisionTimeSpan
negative of this instance.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 116 IVI Foundation

3.4.16 Plus

Description

Unary plus. This method does not change the value of this PrecisionTimeSpan. Instead, a new
PrecisionTimeSpan is returned whose value is the result of this operation.

.NET Prototype

public PrecisionTimeSpan Plus ()

Parameters

Output

Description

Data Type

Return value

A new PrecisionTimeSpan with the same value

as this instance.

PrecisionTimeSpan

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

117

IVI Foundation

3.4.17 Subtract

Description

Subtracts the value of the specified PrecisionTimeSpan or TimeSpan from the value of this
instance. This method does not change the value of this PrecisionTimeSpan. Instead, a new
PrecisionTimeSpan is returned whose value is the result of this operation.

.NET Prototype

public PrecisionTimeSpan Subtract (PrecisionTimeSpan pts)

public PrecisionTimeSpan Subtract (TimeSpan ts)

Parameters
Input Description Data Type
pts A PrecisionTimeSpan. PrecisionTimeSpan
ts A TimeSpan. TimeSpan
Output Description Data Type
Return value A new PrecisionTimeSpan instance that isthe | PrecisionTimeSpan
difference of this instance and pts or ts.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

118

IVI Foundation

3.4.18 ToString

Description
Converts the value of the current PrecisionTimeSpan object to its equivalent string representation.

In most cases, this string will be equivalent to this.ToDateTime () . ToString (), with the
addition of fractional seconds to femtosecond resolution whenever long times are used.

The format parameter is a PrecisionTimeSpan format string. A format string consists of one or
more custom PrecisionTimeSpan format specifiers, and that format string defines the text
representation of a PrecisionTimeSpan object that is produced by a formatting operation.

The following subset of PrecisionTimeSpan format specifiers is allowed for PrecisionTimeSpan:

"d" Represents the number of days in the time span. A single-

Days digit day is formatted with a leading zero.

"hh” Represents the hour as a number from 01 through 12, that
Hours is, the hour as represented by a 12-hour clock. A single-
digit hour is formatted with a leading zero.

mm" Represents the minutes as a number from 00 through 59. A

Minutes single-digit minute is formatted with a leading zero.

"'ss" Represents the seconds as a number from 00 through 59. A
single-digit second is formatted with a leading zero.

Seconds "f N ‘f” characters, where N is from 1 to 15, represent the N
most significant digits of the seconds fraction. Note that
this is an extension of the DateTime format specifier, where
"f " N cannot be greater than 7.

The time separator defined in the current
System.Globalization.DateTimeFormatinfo. TimeSeparator
property that is used to differentiate hours, minutes, and
seconds.

" Quoted string (apostrophe). Displays the literal value of any
Special string between two apostrophe (') characters.

"%c" Represents the result associated with a custom format
specifier "c", when the custom DateTime format string
consists solely of that custom format specifier. For
example, to use the "d" custom format specifier by itself,
specify "%d".

For any other character, the literal value of the character is copied to the result string, and does not
affect formatting.

.NET Prototype

public string ToString(string format)

Parameters

Input Description Data Type

format A PrecisionTimeSpan format string. IFormatProvider

IVI1-3.18: .NET Utility Classes and Interfaces Specification 119 IVI Foundation

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm
ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.NETDEVFX.v20.en/cpref7/html/T_System_DateTime.htm

Output

Description

Data Type

return value

A string representation of the value of the
current PrecisionTimeSpan object.

string

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

120

IVI Foundation

3.4.19 ToTimeSpan

Description

Returns a new TimeSpan with the value of this instance of PrecisionTimeSpan, with femtoseconds
rounded to the nearest 100 nanoseconds.

.NET Prototype
public TimeSpan ToTimeSpan ()

Parameters
Output Description Data Type
Return value A TimeSpan whose value is the date and time | TimeSpan

represented by this instance with femtoseconds
rounded to the nearest 100 nanoseconds.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 121 IVI Foundation

3.4.20 IConvertible.ToDouble

Description

Returns a Double with the value returned by the TotalSeconds property of this instance of
PrecisionTimeSpan.

.NET Prototype

string IConvertible.ToDouble (IFormatProvider provider)

Parameters
Input Description Data Type
provider A format provider_ IFormatProvider
Output Description Data Type
return value A Double with the value returned by the Double
TotalSeconds property of this instance of
PrecisionTimeSpan.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

122

IVI Foundation

3.4.21 IConvertible. ToString

Description

Converts the value of the current PrecisionTimeSpan object to its equivalent string representation
using the default "d.hh:mm:ss. fffffffffff" format specifier. Refer to section 3.4.18, ToString,
for a description of the PrecisionTimeSpan format specifiers.

.NET Prototype

string IConvertible.ToString(IFormatProvider provider)

Parameters
Input Description Data Type
provider A format provider_ IFormatProvider
Output Description Data Type
return value The string representation of this instance, string
formatted using the default
"d.hh:mm:ss. fFfFFFFFFfff" format specifier.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 123 IVI Foundation

3.4.22 Object.Equals

Description

Determines whether two specified instances of PrecisionTimeSpan represent the same precision
time span.

.NET Prototype

public override bool Equals (object ob7j)

Parameters
Output Description Data Type
ob]j A boxed PrecisionTimeSpan object to compare,| Object
or a null reference.
Return value True if this instance and the 'obj' instance Boolean
represent the same precision time span.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 124 IVI Foundation

3.4.23 Object.GetHashCode

Description

Returns the hash code for this instance.

.NET Prototype

public override int GetHashCode ()

Parameters

Output

Description

Data Type

Return value

A 32-bit signed integer hash code.

Int32

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

125

IVI Foundation

3.4.24 Object.ToString

Description

Converts the value of the current PrecisionTimeSpan object to its equivalent string representation
using the default "d.hh:mm:ss. fffffffffff" format specifier. Refer to section 3.4.18, ToString,
for a description of the PrecisionTimeSpan format specifiers.

.NET Prototype

public override string ToString()

Parameters
Output Description Data Type
Return value The formatted time span string. string

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 126 IVI Foundation

3.5 PrecisionTimeSpan Operators

The PrecisionTimeSpan class defines the following operators:
+ (Unary)
- (Unary)

This section describes the behavior and requirements of each operator.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 127 IVI Foundation

3.5.1 + (Unary Addition Operator)

Description

Returns the same instance of PrecisionTimeSpan, unchanged.

.NET Prototype

public static PrecisionTimeSpan operator + (PrecisionTimeSpan pts)

Parameters
Input Description Data Type
pts A PrecisionTimeSpan operand. PrecisionTimeSpan
Output Description Data Type
Return value The same instance of PrecisionTimeSpan as pts| PrecisionTimeSpan

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 128 IVI Foundation

3.5.2 - (Unary Subtraction Operator)

Description

Returns a new PrecisionTimeSpan with the same numeric value as pts, but the opposite sign.

.NET Prototype

public static PrecisionTimeSpan operator - (PrecisionTimeSpan pts)
Parameters
Input Description Data Type
pts A PrecisionTimeSpan operand. PrecisionTimeSpan
Output Description Data Type
Return value A new PrecisionTimeSpan with the same PrecisionTimeSpan
numeric value as pts, but the opposite sign.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 129 IVI Foundation

3.5.3 + (Addition Operator)

Description

Adds a PrecisionTimeSpan or TimeSpan to another PrecisionTimeSpan or Time Span, yielding a
new PrecisionTimeSpan.

.NET Prototype

public static PrecisionTimeSpan operator +(
PrecisionTimeSpan ptsl,
PrecisionTimeSpan pts2)

public static PrecisionTimeSpan operator +(
PrecisionTimeSpan pts,
TimeSpan ts)

public static PrecisionTimeSpan operator +(
TimeSpan ts,
PrecisionTimeSpan pts)

Parameters
Input Description Data Type
pts, ptsl, pts2| A PrecisionTimeSpan operand. PrecisionTimeSpan
ts A TimeSpan operand. PrecisionTimeSpan
Output Description Data Type
Return value The sum of the two operandsl PrecisionTimeSpan

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 130 IVI Foundation

3.5.4 - (Subtraction Operator)

Description

Subtracts a PrecisionTimeSpan or TimeSpan from another PrecisionTimeSpan or TimeSpan,
yielding a new PrecisionTimeSpan.

.NET Prototype

public static PrecisionTimeSpan operator - (
PrecisionTimeSpan ptsl,
PrecisionTimeSpan pts2)

public static PrecisionTimeSpan operator - (
PrecisionTimeSpan pts,

TimeSpan ts)

public static PrecisionTimeSpan operator - (

Parameters

TimeSpan ts,

PrecisionTimeSpan pts)

Input

Description

Data Type

pts, ptsl, pts2

A PrecisionTimeSpan operand.

PrecisionTimeSpan

ts

A TimeSpan operand.

PrecisionTimeSpan

Output

Description

Data Type

Return value

The difference between the first and second
operands.

PrecisionTimeSpan

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

131

IVI Foundation

3.5.5 * (Multiplication Operator)

Description

Multiplies a PrecisionTimeSpan by a numeric multiplier, yielding a new PrecisionTimeSpan
whose length is the product of the multiplier and the number of seconds in the original time span.

If necessary, the result is rounded to the nearest Femtosecond. Results that are exactly exactly .5
femtoseconds from a valid whole femtosecond are rounded up.

.NET Prototype

public static PrecisionTimeSpan operator * (PrecisionTimeSpan pts,
Double factor)

Parameters
Input Description Data Type
pts A PrecisionTimeSpan operand. PrecisionTimeSpan
factor The numeric multiplier. Double
Output Description Data Type
Return value A PrecisionTimeSpan whose length is the PrecisionTimeSpan
product of the multiplier and the number of
seconds in the original time span.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 132 IVI Foundation

3.5.6 == (Equality Operator)
Description

Determines whether two specified instances of PrecisionTimeSpan are equal.

.NET Prototype

public static bool operator ==(PrecisionTimeSpan ptsl,
PrecisionTimeSpan pts2)

Parameters
Input Description Data Type
ptsl A PrecisionTimeSpan operand. PrecisionTimeSpan
pts2 A PrecisionTimeSpan operand. PrecisionTimeSpan
Output Description Data Type
Return value true if ptsl and pts2 represent the same time | bool
span; otherwise, false.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 133 IVI Foundation

3.5.7 = (Equality Operator)

Description

Determines whether two specified instances of PrecisionTimeSpan are not equal.

.NET Prototype

public static bool operator !=(PrecisionTimeSpan ptsl,
PrecisionTimeSpan pts2)

Parameters
Input Description Data Type
ptsl A PrecisionTimeSpan operand. PrecisionTimeSpan
pts2 A PrecisionTimeSpan operand. PrecisionTimeSpan
Output Description Data Type
Return value true if ptsl and pts2 represent different time | bool
spans; otherwise, false.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 134 IVI Foundation

3.5.8 >= (Greater Than Or Equal To Operator)

Description

Determines whether one specified PrecisionTimeSpan is greater than or equal to another specified
PrecisionTimeSpan.

.NET Prototype

public static bool operator >=(PrecisionTimeSpan ptsl,
PrecisionTimeSpan pts2)

Parameters
Input Description Data Type
ptsl A PrecisionTimeSpan operand. PrecisionTimeSpan
pts2 A PrecisionTimeSpan operand. PrecisionTimeSpan
Output Description Data Type
Return value true if ptsl and pts2 represent the | bool
same time span, or if ptsl is
greater than pts2, otherwise false.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 135 IVI Foundation

3.5.9 <= (Less Than Or Equal To Operator)

Description

Determines whether one specified PrecisionTimeSpan is less than or equal to another specified
PrecisionTimeSpan.

.NET Prototype

public static bool operator <=(PrecisionTimeSpan ptsl,
PrecisionTimeSpan pts2)

Parameters
Input Description Data Type
ptsl A PrecisionTimeSpan operand. PrecisionTimeSpan
pts2 A PrecisionTimeSpan operand. PrecisionTimeSpan
Output Description Data Type
Return value true if ptsl and pts2 represent the same time bool
span, or if ptsl is less than pts2, otherwise false.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

136

IVI Foundation

3.5.10 > (Greater Than Operator)

Description

Determines whether one specified PrecisionTimeSpan is greater than another specified
PrecisionTimeSpan.

.NET Prototype

public static bool operator >(PrecisionTimeSpan ptsl,
PrecisionTimeSpan pts2)

Parameters
Input Description Data Type
ptsl A PrecisionTimeSpan operand. PrecisionTimeSpan
pts2 A PrecisionTimeSpan operand. PrecisionTimeSpan
Output Description Data Type
Return value true if ptsl is greater than pts2, otherwise false. | bool

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

137

IVI Foundation

3.5.11 < (Less Than Operator)

Description

Determines whether one specified PrecisionTimeSpan is less than another specified
PrecisionTimeSpan.

.NET Prototype

public static bool operator <

(PrecisionTimeSpan ptsl,

PrecisionTimeSpan pts2)

Parameters
Input Description Data Type
ptsl A PrecisionTimeSpan operand. PrecisionTimeSpan
pts2 A PrecisionTimeSpan operand. PrecisionTimeSpan
Output Description Data Type
Return value true if ptsl is less than pts2, otherwise false. bool

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

138 IVI Foundation

4. Common Properties and Methods of Waveform and Spectrum
Interfaces

4.1 Overview

This section describes methods and properties that are common to the spectrum and waveform
interfaces:

Spectrum interfaces
ISpectrum
ISpectrumMemory
Waveform interfaces
IWaveform

IWaveformMemory

Drivers that produce or consume a waveform or spectrum type use these common APIs to simplify
working with those objects.

A waveform is used for any time-varying value. Therefore, the data array in a time waveform
may refer to power, voltage, wavelength, or other sundry values. A spectrum is used for any
frequency-varying value. Therefore, the data array in a spectrum may refer to power, voltage,
wavelength, or other sundry values.

Unless documented otherwise, all methods that return a waveform/spectrum shall implement the
appropriate waveform or spectrum interface defined here.

4.2 How to use Waveform and Spectrum Types
Waveforms and spectrums are composed of:

Data array This is an array that contains the explicit data. Waveform/Spectrum objects are
generic so that the type of the data array can be chosen appropriately for the application. The
data array can be composed of compound types such as a MinMax struct with two values.

Implicit Axis The information about the index of the explicit data. For a waveform this
describes the time corresponding to the waveform data. For a spectrum, this describes the
frequency corresponding to the spectrum data.

Utility Methods The interfaces have methods that are generally useful for working with the
data including a timestamp, scaling information for integers and other conveniences.

4.2.1 The Location of the Waveform or Spectrum in the data array

Where there are not performance penalties, the first element in the data array should be the first
element in the Waveform/Spectrum. However, for certain hardware implementations, the
alignment required by the DMA hardware may differ from the memory allocation alignment. In
circumstances such as this, Waveform/Spectrum producers are permitted to start the actual
waveform/spectrum data within the data array at an offset indicated by FirstValidPoint property.

In any case, the number of data points within the data array is indicated by the ValidPointCount
property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 139 IVI Foundation

4.2.2 Methods that return a Waveform or Spectrum

With the exception of factory methods, methods that return a waveform/spectrum shall also be
passed a waveform/spectrum and will have the following behaviors based on the input waveform:

If the method receives a null reference: The method will consult the type of the null
reference and allocate a new waveform/spectrum of the same type with an appropriate extent
for the current configuration of the driver. The new waveform/spectrum is returned to the
client. The driver may allocate more memory than necessary for the data array if the larger
size has the potential to provide some present or future efficiency benefit, that is, the Capacity
may exceed the ValidPointCount.

If the method receives a non-null reference with zero sized data: This permits the client
to choose the concrete class that implements the Waveform/Spectrum but defer to the driver
for the size and creation of the data array. This may result in sub-optimal performance if the
waveform/spectrum was not of the class that the driver prefers. If the data array is not of a
supported size or type, the driver shall throw the Invalid Waveform Data Type or Invalid
Spectrum Data Type exception. The driver is permitted to allocate new memory or use
memory from an existing source for the data array.

If the method receives a previous instantiated waveform/spectrum object: The driver
shall fill the data into the object passed. The driver is required to use the allocated memory
and is not permitted to use an existing or allocate a new block of memory. If the measured
data exceeds the available space the driver will throw the Data Array Too Small exception. If
the measured data matches or is less than the available space the data is filled in and the
ValidPointCount shall return an appropriate value. The Capacity shall remain the same. Note
that if the alignment requirements dictate that the array be filled from some firstValidPoint
other than zero, then a block of memory that appears to be large enough just based on the
Capacity may be too small.

If the method does not support the data array type specified in this API, it shall throw Invalid
Waveform Data Type or Invalid Spectrum Data Type exception.

Methods that return a waveform or spectrum shall not alter the driver configuration based on the
implicit axis information or the pre-existing data values. That is, these values shall be filled in by
the method and the values in the input object shall not change the driver configuration.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 140 IVI Foundation

4.2.2.1 Time Axis Properties for Waveforms

In addition to setting the data array, the returned object shall set up the time axis properties for the
waveform. Table 1: Meaning of the Time Axis Property Special Values shows the special values
used for time axis properties.

Table 1: Meaning of the Time Axis Property Special Values

Property Zero NotATime

ValidPointCount | There are no valid data points N/A (NotATime is not a valid
in the waveform. value for Int64.)

TriggerTime N/A (There is no zero value for | The waveform is empty or there is
PrecisionDateTime.) no absolute reference for the

waveform.

StartTime The waveform is not relative to | N/A (NotATime is not a valid
anything, or the relative value for PrecisionTimeSpan.)
measure is zero, or the
waveform is empty.

EndTime There is exactly one data point | N/A (NotATime is not a valid
and the startTime iS zero, or value for PrecisionTimeSpan.)
the waveform is empty.

TotalTime There is exactly one data point | N/A (NotATime is not a valid
in the waveform, TotalTime is | value for PrecisionTimeSpan.)
really zero, or the waveform is
empty.

For example, for waveforms with a single data point at a known time, TriggerTime is the time of
the data point and startTime, EndTime, and TotalTime are all zero. For waveforms with a
single data point at an unknown time, TriggerTime iS NotATime and StartTime, EndTime,
and TotalTime are all zero.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

141 IVI Foundation

4.2.3 Methods or properties that receive a Waveform or Spectrum

Methods that receive a waveform/spectrum as an input value are required to evaluate the full
extent of the object, including the implicit axis information and the full data array (up to the valid
point count, not the capacity). If the object is inappropriate to the API the driver shall throw an
appropriate exception.

In some cases, values such as the StartTime or TriggerTime may not be applicable to the API (for
instance, if the waveform represents a periodic waveform to be generated by an arbitrary
waveform generator). However, if there are reasonable interpretations of the implicit axis data in
the waveform (such as the IntervalPerPoint when used with an arbitrary waveform generator) they
shall be used by the driver or an appropriate exception thrown. An exception shall not be thrown
in cases where the supplied values are not applicable if the applicable values are all
implementable.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 142 IVI Foundation

4.2.4 Scaled array data

If the data array is based on an integer template type, it does not directly represent a physical
quantity. If the data array is based on the Double template type, it does directly represent a
physical quantity.

To obtain the physical quantity from a data array based on an integer template type, the user must
scale the data using the following formula:

Physical Quantity = ArrayElement * Scale + Offset

For example:
Double value = (Double)aWaveform[i] * aWaveform.Scale + awWaveform.Offset;

If the Scale and Offset are not used they shall return the values 1 and O respectively.

The Scale and Offset shall not be used for floating point data.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 143 IVI Foundation

4.2.5 General Requirements regarding IWaveform and ISpectrum interfaces

Although required to accept any object that implements the IviDriver.IWaveform<T> or
IviDriver.1Spectrum<T> interfaces with an appropriate template type, individual drivers are
permitted to provide their own factory methods that create objects optimized for the operation of
that driver. An example of this would be a driver that allocates shared memory for the data array.
Such an object would not necessarily work correctly if passed to a driver other than the one that
created it.

If a client allocates an Ivi.Driver.Waveform and passes it to an instrument interface, they are
assured that no ties remain to it from the driver when it is returned from the driver. However, if
the object was allocated by the driver, further interaction with the driver could result in the data in
the object changing. Clients worried about this should either copy the result to an
Ivi.Driver.Waveform before additional driver access, or pass an lvi.Driver.Waveform to the driver
to get the data.

4.2.6 Data Array Types

IV specifications, classes or specific drivers that produce or consume objects that implement or
extend IWaveform<T> or ISpectrum<T> interfaces shall document the type parameters they
support.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 144 IVI Foundation

4.3 Waveform and Spectrum Common Properties

The waveform and spectrum interfaces use the following properties:
Item
Capacity
EndTime
IntervalPerPoint
Offset
Scale
StartTime
TotalTime
TriggerTime
ValidPointCount

This section describes the common behavior and requirements of each property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 145 IVI Foundation

4.3.1 Item

Data Type

Access

T

RW

.NET Prototype

In .NET the property name is Item. The syntax for this property is:

T this[Int64 Index]

That is, the array access operator can be directly applied to a waveform to access elements of the

data array. T is the type of the data element in the waveform.

Description

This returns the data element at the specified index. Note that for scaled (that is, integer) types,
the scaling must be applied to the returned data element to convert it to a physical value.

Drivers shall document the template types that they support.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

146

IVI Foundation

4.3.2 Capacity

Data Type Access
Int64 RW

.NET Prototype
Int64 Capacity { get; set; }

Description

Capacity is the number of elements that the waveform/spectrum array can store. Note that Valid
Point Count may be used to get the actual number of elements in this waveform/spectrum. When
the value of Capacity is set explicitly, the internal array is also reallocated to accommaodate the
specified capacity, and all the elements are copied.

In some cases, the data array may be stored using a method that does not support dynamic
allocation, such as a memory mapped acquisition buffer. In these cases, attempts to explicitly set
Capacity will throw an exception.

If a reduction in capacity would cause FirstValidPoint to be invalid, it will set both

ValidPointCount and FirstValidPoint to zero. If a reduction in capacity would cause only

ValidPointCount to be invalid, ValidPointCount will be reduced to fit within the capacity.
.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

If the implementation cannot reallocate the internal storage array, the method shall throw a
System.InsufficientMemaory exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 147 IVI Foundation

4.3.3 ContainslnvalidElement

Data Type Access
Boolean RW

.NET Prototype

Boolean ContainsInvalidElement { get; set; }

Description

ContainslnvalidElement indicates that one or more points in the waveform/spectrum array are not
valid. For instance, the signal was not sampled at this point.

If the elements are composed of a floating point type, ContainsinvalidElement shall be true if and
only if at least one element within the valid range of elements is set to NaN.

If valid point count is zero, the value shall be false.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
o If the elements are not composed of floating point types, setting and reading ContainsinvalidElement
are permitted to throw an Invalid Operation exception.
o If the implementation does not support changing ContainsinvalidElement (i.e. it is determined
automatically), setting ContainsinvalidElement is permitted to throw an Operation Not Supported
exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 148 IVI Foundation

4.3.4 ContainsOutOfRangeElement

Data Type Access
Boolean RW

.NET Prototype

Boolean ContainsOutOfRangeElement { get; set; }

Description

ContainsOutOfRangeElement indicates that one or more points in the waveform/spectrum array
are out of range. That is, a value that is too large or to small to represent (for instance a large
positive number). This is not intended to represent numbers that are too close to zero to represent.

If the elements are composed of a floating point type, ContainsOutOfRangeElement shall be true
if and only if at least one element within the valid range of elements is set to +Inf or -Inf.

If valid point count is zero, the value shall be false.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
o If the elements are not composed of floating point types, setting and reading
ContainsOutOfRangeElement are permitted to throw an Invalid Operation exception.
o If the implementation does not support changing ContainsOutOfRangeElement (i.e. it is determined
automatically), setting ContainsOutOfRangeElement is permitted to throw an Operation Not Supported
exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 149 IVI Foundation

4.3.5 EndTime (waveform types)

Data Type Access

PrecisionTimeSpan R

.NET Prototype

PrecisionTimeSpan EndTime { get; }

Description

EndTime i the time between the last valid data point in the waveform and the TriggerTime.
Positive values of EndTime indicate that it occurred after the trigger.

If EndTime is zero, there is exactly one data point and the startTime is zero, or the waveform is
empty.

This value is set by the waveform configure method.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 150 IVI Foundation

4.3.6 FirstValidPoint

Data Type

Access

Int64

RW

.NET Prototype

Int64 FirstvValidPoint { get;

Description

}

For waveforms/spectrums that contain invalid padding data at the beginning of the data array,
FirstValidPoint indicates the first element in the data array with valid data. If there is no padding

data at the beginning of the data array, FirstValidPoint will be zero.

If valid point count is 0, the value shall be zero. This value must not exceed capacity.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
o If the FirstValidPoint exceeds the capacity, it will throw a Operation Not Supported exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

151

IVI Foundation

4.3.7 FrequencyStep (spectrum types)

Data Type

Access

Double

.NET Prototype
Double FrequencyStep { get;

Description

Frequency step is the frequency difference in Hertz between subsequent points in the data array.

This value is set by the spectrum Configure method, and is defined as (StopFrequency -

StartFrequency) / (ValidPointCount — 1).

If valid point count is 0 or 1, the value shall be zero..NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

152

IVI Foundation

4.3.8 Start Frequency (spectrum types)

Data Type Access

Double R

.NET Prototype
Double StartFrequency { get; }

Description

Start frequency is the frequency in Hertz of the first valid data point (that is the data point at index
FirstValidPoint) in the data array.

This value is set by the spectrum Configure method.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 153 IVI Foundation

4.3.9 Stop Frequency (spectrum types)

Data Type

Access

Double

.NET Prototype

Double StopFrequency { get; }

Description

Stop frequency is the frequency in Hertz of the final valid data point in the data array (that is the
data point at index FirstValidPoint+ValidPointCount-1).

This value is set by the spectrum Configure method.

.NET Exceptions

The IVI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

154

IVI Foundation

4.3.10 IntervalPerPoint (waveform types)

Data Type

Access

PrecisionTimeSpan

.NET Prototype

PrecisionTimeSpan IntervalPerPoint { get;

Description

Interval per point is the amount of time between data points in the data array.

}

This value is set by the waveform Configure method, and cannot be a negative value. A value of
Zero indicates that it is not meaningful for this object.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

155

IVI Foundation

4.3.11 Offset

Data Type

Access

Double

RW

.NET Prototype
Double Offset { get; set; }

Description

Offset is the offset to apply to scale integer values. To convert an integer data array element to a
physical value first it is multiplied by the scale, and then the offset is added. The Scale and Offset
properties are used to map the range and resolution of integers to physical values.

If the integers in the data array do not have an offset, the offset property is 0.

If the contents of the data array are floating point scalars, the offset property is set to 0.

If the contents of the data array are some other type the use of the offset is dependent on that

driver and data type.

The value cannot be positive or negative infinity, or Not a Number.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

o If the data type is a floating point value, setting Offset is permitted to throw an Invalid Operation

exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

156

IVI Foundation

4.3.12 Scale

Data Type

Access

Double

RW

.NET Prototype

Double Scale { get;

Description

Scale is the factor to apply to scale integer values. To convert an integer data array element to a
physical value the element is multiplied by scale, and then the offset is added. The Scale and
Offset properties are used to map the range and resolution of integers to physical values.

If the integers in the data array do not have an offset, the scale property is set to 1.

If the contents of the data array are floating point scalars, the scale property is set to 1.

If the contents of the data array are some other type the use of the scale is dependent on that

driver and data type.

The value cannot be positive or negative infinity, or Not a Number.

.NET Exceptions

The 1V1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.
o If the data type is a floating point value, setting Offset is permitted to throw an Invalid Operation

exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

157

IVI Foundation

4.3.13 StartTime (waveform types)

Data Type Access

PrecisionTimeSpan R

.NET Prototype

PrecisionTimeSpan StartTime { get; }

Description

StartTime is the time between the first valid data point (that is the data point at index
FirstvValidPoint) in the waveform and the trigger. Positive values indicate that the
StartTime occurred after the trigger.

If startTime is zero, the waveform is not relative to anything, or the relative measure is zero, or
the waveform is empty.

This value is set by the waveform Configure method.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 158 IVI Foundation

4.3.14 TotalTime (waveform types)

Data Type Access

PrecisionTimeSpan R

.NET Prototype

PrecisionTimeSpan TotalTime { get; }

Description

TotalTime i the timespan represented by the valid points in the waveform. Numerically, it is
equivalent to the IntervalPerPoint * (ValidPointCount - 1). Itisalso numerically the

EndTime - StartTime.

TotalTime IS zero if there is exactly one data point in the waveform, or the waveform is empty.

This value is set by the waveform configure method.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 159 IVI Foundation

4.3.15 TriggerTime

Data Type Access

PrecisionDateTime RW

.NET Prototype

PrecisionDateTime TriggerTime { get; set; }

Description
TriggerTime iS the absolute time at which this measurement was triggered.

Note that this differs from start Time in that the trigger may have occurred at some time other
than when the first data point was captured, as in pre-trigger or post-trigger applications.

TriggerTime iS an absolute time and cannot be set to zero. If it is set to NotATime, the
waveform is empty or there is no absolute reference for the waveform.

.NET Exceptions

The 1V1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 160 IVI Foundation

4.3.16 ValidPointCount

Data Type

Access

Int64

RW

.NET Prototype

Int64 ValidPointCount { get; set;

Description

}

ValidPointCount is the actual number of elements in the waveform/spectrum. Note that
Capacity may be used to get the number of elements that the waveform/spectrum can store.

ValidPointCount is the number of valid points starting with the element identified by

FirstValidPoint.

If validPointCount is zero, there are no valid data points in the waveform, and the waveform is

considered to be empty.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

o If the validPointCount exceeds the data array size, the Valid Point Count Exceeds Capacity

exception is thrown.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

161

IVI Foundation

4.4 Waveform and Spectrum Common Methods

The waveform and spectrum interfaces use the following methods:
Configure
GetAllElements
GetElements
GetScaled
PutElements

This section describes the common behavior and requirements of each of the above methods.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 162 IVI Foundation

4.4.1 Configure (waveform types)

Description
The Configure method defines the time (implicit) axis and number of data points in the waveform.

Because of the interaction between these values, they are set as a group with this method or when
the waveform is initially created.

The Configure call does not change any of the explicit data in the Waveform.

If the validPointCount is specified and it is different from the current value of Valid Point Count,
the mechanism by which the array is extended or contracted is depends on the waveform class.
Classes may optimize memory use by maintaining a validPointCount different from the capacity
of the data array. The capacity of the waveform shall not change as a side effect of the Configure
method.

If the validPointCount exceeds the data array size, the Valid Point Count Exceeds Capacity
exception is thrown.

.NET Prototype

void Configure (PrecisionTimeSpan startTime,
PrecisionTimeSpan intervalPerPoint,
Int64 validPointCount,
PrecisionDateTime triggerTime) ;

void Configure (PrecisionTimeSpan startTime,
PrecisionTimeSpan intervalPerPoint,
PrecisionDateTime triggerTime) ;

void Configure (PrecisionTimeSpan startTime,
PrecisionTimeSpan intervalPerPoint,

Int64 validPointCount) ;

void Configure (PrecisionTimeSpan startTime,
PrecisionTimeSpan intervalPerPoint);

void Configure (PrecisionTimeSpan intervalPerPoint,
Int64 validPointCount);

void Configure (PrecisionTimeSpan intervalPerPoint);

Parameters
Input Description Data Type
startTime startTime is the time of the first data pointin | PrecisionTimeSpan

the waveform relative to the trigger time. See
the StartTime property for more information.

Default value is PrecisionTimeSpan.Zero.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 163 IVI Foundation

intervalPerPoint

intervalPerPoint is the amount of time between PrecisionTimeSpan

data points in the waveform, and cannot be a
negative. A value of zero indicates that it is
not meaningful for this object.. See the
InterverPerPoint property for more
information.

This value is required.

the waveform, and cannot be negative. See the
ValidPointCount property for more
information.

Default behavior is to not change the current
setting.

triggerTime triggerTime is the time that this measurement | PrecisionDateTime
was triggered. See the TriggerTime property
for more information.
Default value is NotATime

validPointCount | validPointCount is the number of elementsin | Int64

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

o If the value of validPointCount is greater than the capacity of the waveform, the method shall throw
the Valid Point Count Exceeds Capacity exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 164

IVI Foundation

4.4.2 Configure (spectrum types)

Description

The Configure method fully defines the frequency (implicit) axis and number of data points in the
spectrum.

Because of the interaction between these values, they are set as a group with this method or when
the spectrum is initially created.

Ths Configure call does not change any of the explicit data in the spectrum if the extent of the
array is not changed.

No changes to the underlying data array are made if the extent of the array is not changed by
specifying a validPointCount that is different from the array currently in the spectrum.

If the validPointCount is specified and it is different from the current value of Valid Point Count,
the mechanism by which the array is extended or contracted is driver-dependent. Regardless, the
capacity of the spectrum shall not change as a side effect of this method. Classes may optimize
memory use by maintaining a validPointCount different from the capacity of the data array.

If the validPointCount exceeds the data array size, the Valid Point Count Exceeds Capacity
exception is thrown.

NET Prototype

void Configure (Double startFrequency,
Double stopFrequency,
PrecisionDateTime triggerTime,
Int64 validPointCount) ;

void Configure (Double startFrequency,
Double stopFrequency,
PrecisionDateTime triggerTime) ;

void Configure (Double startFrequency,
Double stopFrequency,
Int64 validPointCount) ;

void Configure (Double startFrequency,
Double stopFrequency) ;

Parameters

Input Description Data Type

startFrequency startFrequency is the frequency of the first datqg Double
point in the spectrum. See the StartFrequency
property for more information.

stopFrequency stopFrequency is the frequency fo the last data| Double
pointin the spectrum. See the StopFrequency
property for more information.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 165 IVI Foundation

triggerTime

triggerTime is the time that this measurement
was triggered. See the TriggerTime property
for more information.

The default value for this property is
<NotATime>

PrecisionDateTime

validPointCount

validPointCount is the number of elements in
the waveform, and cannot be negative. See the
ValidPointCount property for more
information.

Default behavior is to not change the current
setting.

Into64

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

o If the value of validPointCount is greater than the capacity of the waveform, the method shall throw
the Valid Point Count Exceeds Capacity exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 166

IVI Foundation

4.4.3 GetAllElements

Description

The GetAllElements method returns a copy of the entire data array in the template data type.

If the template data type is an integer, the returned data will not be scaled. That is, the data will
not represent physical units until the scale and offset are applied.

.NET Prototype

T[] GetAllElements();

Parameters

Output

Description

Data Type

Return value

An array of the template type that contains the

same values as the data in data array

T[]

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

167

IVI Foundation

4.4.4 GetElements

Description

The GetElements method returns a copy of either all or part of the data array in the template type
starting at the specified index and with the specified length.

If the template data type is an integer, the data will not be scaled. That is, the data will not
represent physical units until the scale and offset are applied.

.NET Prototype
T[] GetElements (Int64 index, Int64 count);

Parameters
Input Description Data Type
index The index in the Waveform that will be the first| Int64
element in the returned array. That is, element
zero in the returned array is at this index in the
Waveform.
count The number of elements to be returned. Int64
Output Description Data Type
Return value The data array taken from the Waveform, of the| T[]
type of the Waveform data array.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 168 IVI Foundation

4.45 GetScaled

Description

Returns all or part of the data array as a Double. If the internal data array is an integer, the scaling
is applied to the values in the returned array.

If only an index is provided, the data value at that point is returned instead of an array.

.NET Prototype
Double GetScaled(Int64 index);

Double[] GetScaled(Int64 index, Int64 count);

Parameters
Input Description Data Type
index Either the index of the data element to return, or] Int64
the index of the first element in the array to
return.
count If provided, the number of data points to includg Int64
in the returned array. If not provided, a scalar
value is returned.
Output Description Data Type
Return value The specified data element from the array. Double
Data from the array. Double|[]

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 169 IVI Foundation

4.4.6 PutElements

Description

PutElements copies data elements into either all or part of the data array.

Index is the first element of the data array to receive the new data.

The implicit axis of the waveform or spectrum is not changed by PutElements.

If the data array does not have sufficient capacity for the data, the capacity will be increased to
accommodate the new data.

.NET Prototype

void PutElements (T[] data):;

volid PutElements (Int64 index, T[] data);

void PutElements (Int64 index,

ArraySegment<T> segment) ;

Parameters
Input Description Data Type
index The index of the first element of the data array | Int64
to change.
data The data to be placed into the array. T[]
segment The data to be placed into the array. ArraySegment<T>

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this method.

If the array passed extends beyond the end of the Waveform and the implementation does not
reallocate a larger capacity, the method shall throw an Argument Out Of Range exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

170

IVI Foundation

5. IWaveform<T> Interface

5.1 Overview

IVI provides standard definitions for Waveforms and Spectrums. Drivers that produce or
consume a waveform/spectrum use these common types to simplify working with those objects.

IWaveform<T> is the most basic template interface for a waveform. The requirements of the
common properties and methods are described in section 4 (Common Properties and Methods of
Waveform and Spectrum Interfaces).

IWaveform<T> does not provide direct access to the data array so it can be used where the data
array is not in conventional memory. IWaveform is also the basis for other waveform types.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 171 IVI Foundation

5.2 IWaveform<T> Properties
The IWaveform<T> interface defines the following properties:
e [tem
e Capacity
e ContainsinvalidElement
e ContainsOutOfRangeElement
e EndTime
e FirstValidPoint

e IntervalPerPoint

o Offset

e Scale

e StartTime
e TotalTime

e TriggerTime
e ValidPointCount

Each of these is described in section 4, Common Properties and Methods of Waveform and
Spectrum Interfaces.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 172 IVI Foundation

5.3 IWaveform <T> Methods

The IWaveform <T> interface defines the following methods:

Configure
GetAllElements
GetElements
GetScaled

PutElements

Each of these is described in section 4 (Common Properties and Methods of Waveform and
Spectrum Interfaces).

IVI1-3.18: .NET Utility Classes and Interfaces Specification

173

IVI Foundation

6. IMemoryWaveform<T> Interface

6.1 Overview

The IMemoryWaveform interface extends from the IWaveform interface and includes all of the
methods and properties of IWaveform and has the same requirements and capabilities. In
addition, the IMemoryWaveform provides direct access to the explicit data with an in-memory
array.

6.1.1 Type Parameters
IVI specifications, classes or specific drivers that produce or consume objects that implement or
extend IMemoryWaveform<T> shall document the type parameters they support.

6.1.2 Base Interface

The IMemoryWaveform<T> interface extends the IWaveform<T> interface.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 174 IVI Foundation

6.2 IMemoryWaveform<T> Properties

The IMemoryWaveform<T> interface defines the following properties:
e Data

This section describes the behavior and requirements of the Data property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 175 IVI Foundation

6.2.1 Data

Data Type

Access

1]

RW

.NET Prototype
T[] Data { get;

Description

A public, in-memory array containing elements of type T than contains the explicit waveform
data. Clients can use the Data property to directly access the in-memory data without copying.

The Data property returns the entire original array, not a copy of the array. Changes made to the
array returned by the Data property are made to the original array. If the template data type is an

integer, the data will not be scaled.

To acquire a copy of all or part of an array, use the GetAllElements or GetElements methods.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

176

IVI Foundation

7. ISpectrum<T> Interface

A spectrum is used to represent a frequency-varying value. Therefore, the data array in a spectrum
may refer to power, voltage, or other sundry values.

7.1 Overview

IVI provides standard definitions for Spectrums. Drivers that produce or consume spectra use
these common types to simplify working with those objects.

ISpectrum<T> is the most basic template interface for a spectrum. The requirements of the
common properties and methods are described in section 4 (Common Properties and Methods of
Waveform and Spectrum Interfaces).

ISpectrum<T> does not provide direct access to the data array so it can be used where the data
array is not in conventional memory. ISpectrum is also the basis for other spectrum types.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 177 IVI Foundation

7.2 ISpectrum<T> Properties

The I1Spectrum<T> interface defines the following properties:

Item

Capacity
ContainsInvalidElement
ContainsOutOfRangeElement
FirstValidPoint
FrequencyStep
StartFrequency
StopFrequency

Offset

Scale

TriggerTime
ValidPointCount

Each of these is described in section 4, Common Properties and Methods of Waveform and
Spectrum Interfaces.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

178

IVI Foundation

7.3 ISpectrum<T> Methods

The ISpectrum<T> interface defines the following methods:

Configure
GetAllElements
GetElements
GetScaled

PutElements

Each of these is described in section 4 (Common Properties and Methods of Waveform and
Spectrum Interfaces

IVI1-3.18: .NET Utility Classes and Interfaces Specification

179

IVI Foundation

8. IMemorySpectrum<T> Interface

8.1 Overview

The IMemorySpectrum<T> interface extends the 1Spectrum<T> interface and includes all of the
methods and properties of 1Spectrum<T> and has the same requirements and capabilities. In
addition, the IMemorySpectrum<T> provides direct access to the explicit data with an in-memory
array.

8.1.1 Base Interface

The IMemorySpectrum<T> interface extends the 1Spectrum<T> interface.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 180 IVI Foundation

8.2 IMemorySpectrum Properties

The IMemorySpectrum<T> interface defines the following properties:
e Data

This section describes the behavior and requirements of the Data property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 181 IVI Foundation

8.2.1 Data

Data Type

Access

Double[]

RW

.NET Prototype

Double[] Data { get; set; }

Description

A public, in-memory array containing elements of type T that contains the explicit spectrum data.
Clients can use the Data property to directly access the in-memory data without copying.

The Data property returns the entire original array, not a copy of the array. Changes made to the
array returned by the Data property are made to the original array. If the template data type is an

integer, the data will not be scaled.

To acquire a copy of all or part of an array, use the GetAllElements or GetElements methods.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

182

IVI Foundation

9. Waveform<T> Class

The Waveform<T> class is a concrete class provided by IVI to contain waveforms. The
IviDriver.Waveform class implements the IMemoryWaveform<T> interface.

9.1 Overview

9.1.1 Type Parameter Types

The IviDriver.Waveform class supports struct template types of:

Byte

SByte

Int16

Int32

Int64

Single

Double

9.1.2 Implemented Interfaces

The Waveform<T> class implements the IMemoryWaveform<T> interface.

9.1.3 Implemention Limitations

The Waveform class is subject to the .NET 2GB limitation, and cannot be used to represent a
waveform exceeding 2GB. It is possible to manage waveforms larger than this by creating a class
that implements the IWaveform<T> interface using multiple memory allocations to present a
single waveform greater than 2GBs in size. Attempts to set the capacity to a value that would
exceed this limit will cause the method to throw a System.InsufficientMemory exception.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 183 IVI Foundation

9.2 Waveform Constructors

Description

Waveform is concrete class that implements the IMemoryWaveform and IWaveform interfaces. It
has no specific semantics other than containing the data.

Note the waveform allocates memory if the Capacity is specified or if it is initialized with another
waveform.

.NET Prototype

Waveform (IWaveform waveform) ;

Waveform (PrecisionTimeSpan
PrecisionTimeSpan
PrecisionDateTime

startTime,
intervalPerPoint,
triggerTime) ;

Waveform (PrecisionTimeSpan
PrecisionTimeSpan

startTime,
intervalPerPoint) ;

Waveform (PrecisionTimeSpan intervalPerPoint);

Waveform (PrecisionTimeSpan
PrecisionTimeSpan
PrecisionDateTime
Int64 capacity);

Waveform (PrecisionTimeSpan
PrecisionTimeSpan
Int64 capacity);

Waveform (PrecisionTimeSpan
Int64 capacity);

startTime,
intervalPerPoint,
triggerTime,

startTime,
intervalPerPoint,

intervalPerPoint,

Parameters
Input Description Data Type
startTime Set the Waveforms startTime property per | PrecisionTimeSpan
the IWaveform definition.
The default value is
PrecisionTimeSpan.Zero.
intervalPerPoint | Setthe Waveforms intervalPerPoint property PrecisionTimeSpan
per the IWaveform definition.
There is no default value, and it cannot be
zero.
triggerTime Sets the Waveforms triggerTime property | PrecisionDateTime
per the IWaveform definition
The default value is Not a Time.
capacity The capacity of the waveform data array. Int64
The default is 0. If this value is greater than
0, the memory is allocated in the constructor
IVI1-3.18: .NET Utility Classes and Interfaces Specification 184 IVI Foundation

waveform

A waveform whose implicit axis informatior]

will be copied into this waveform.

IWaveform

.NET Exceptions

The IVI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by these constructors.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

185

IVI Foundation

9.3 Waveform <T> Methods
The Waveform <T> class defines defines the following methods:
e RescaleData
e ScaleData

These methods are not defined in the IWaveform<T> interface. They are provided in the
Waveform<T> class as a convenience for users. Developers who create their own Waveform
class are encouraged to provide implementations of these methods as part of the class.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 186 IVI Foundation

9.3.1 RescaleData

Description

RescaleData rebalances the resolution and dynamic range of integer IWaveforms by changing the
underlying data and setting IWaveform.Scale and IWaveform.Offset to the specified values. The
data is changed in such a way that the voltages returned by the GetScaled method are the same
before and after RescaleData is called, within the limits of the mathematical precision of the
operation.

RescaleData is only applicable to waveforms that store the underlying data as integers.

To perform a rescale operation, the following formula (or a heuristically equivalent one) is applied
to each data element in the underlying data array:

Datalidx] = ((Data[idx] * Scale) + Offset - newOffset) / newScale

Due to the limitations in the resolution of integer representations, GetScaled will typically return a
slightly different value for a given data element after rescaling.

When performing the calculations it is possible that the new value for a data element will be
outside the range of the integer type of the data array. In such cases the data element is set to
T.MaxValue or T.MinValue, and the count of out-of-range data elements is incremented. After
the rescaling is complete, the count of out-of-range elements is returned by the method.

.NET Prototype

Int64 RescaleData (Double newScale,
Double newOffset);

Parameters

Input Description Data Type

newScale The new IWaveform.Scale value. Thisisthe | Double
value applied by a subsequent call to
GetScale().

newOffset The new IWaveform.Offset value. This is the | Double
value applied by a subsequent call to
GetScale().

Return Value The number of new data values that were out | Int64
of range when recalculated, and set to
T.MinValue or T.MaxValue as a result.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 187 IVI Foundation

9.3.2 ScaleData

Description

Scale Data scales the waveform by applying a multiplier and adding an offset.

ScaleData is applicable to all types T supported by the Waveform<T> class.

For integer types, ScaleData modifies the values of the voltages in the waveform by multiplying
and applying an offset. This only changes the Scale and Offset as follows:

Scale = Scale * multiplier
Offset = Offset + offset

For floating point waveforms this modifies each data element as follows:
Data[idx] = (Data[idx] * multiplier) + offset

When performing the calculations where T is an integer type, it is possible that the new value for
Scale or Offset will be outside the range of the Double type. In such cases the value is set to
T.MaxValue or T.MinValue instead.

When performing the calculations where T is a floating point type, it is possible that the new value
for a data element will be outside the range of the type of the data array. In such cases the data
element is set to T.MaxValue or T.MinValue, and the count of out-of-range data elements is
incremented. After the rescaling is complete, the count of out-of-range elements is returned by the

method.

.NET Prototype

Int64 ScaleData (Double multiplier,

Double offset);

Parameters
Input Description Data Type
multiplier The multiplier used to modify the waveform | Double
voltages.
offset The offset to be added to the wavefrom Double
voltages.
Return Value The number of new data values that were out | Int64

of range when recalculated, and set to
T.MinValue or T.MaxValue as a result.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this method.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

188

IVI Foundation

10. Spectrum<T> Class

10.1 Overview

The Spectrum<T> class is a concrete class provided by V1 to contain spectrums. The
Spectrum<T> class implements the IMemorySpectrum<T> interface.

10.1.1 Type Parameter Types

The IviDriver.Spectrum class supports struct template types of:
Byte
Int16
Int32
Int64
Single
Double

10.1.2 Implemented Interfaces

The Spectrum class implements the IMemorySpectrum<T> interface.

10.1.3 Implemention Limitations

The Spectrum class is subject to the .NET 2GB limitation, and cannot be used to represent a
spectrum exceeding 2GB. It is possible to manage spectra larger than this by creating a class that
implements the ISpectrum<T> interface using multiple memory allocations to present a single
spectrum greater than 2GBs in size.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 189 IVI Foundation

10.2 Spectrum Constructors

Description

Spectrum is concrete class that implements the 1SpectrumWaveform and ISpectrum interfaces.
has no specific semantics other than containing the data.

.NET Prototype
Spectrum (ISpectrum spectrum) ;

Spectrum (Double startFrequency,
Double stopFrequency,
PrecisionDateTime triggerTime,
Int64 capacity);

Spectrum (Double startFrequency,
Double stopFrequency,
Int64 capacity);

Spectrum (Double startFrequency,
Double stopFrequency,
PrecisionDateTime triggerTime) ;

Spectrum (Double startFrequency,
Double stopFrequency) ;

Parameters
Input Description Data Type

startFrequency The frequency in Hertz corresponding to the| Double
first point in the data array.

stopFrequency The frequency in Hertz corresponding to the| Double
final point in the data array.

triggerTime Sets the Spectrum triggerTime property per | PrecisionDateTime
the ISpectrum definition
The default value is Not a Time.

capacity The capacity of the spectrum data array. Int64
The default is 0. If this value is greater than
0, the memory is allocated in the constructor

spectrum A spectrum whose implicit axis information | ISpectrum
will be copied into this spectrum.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by these constructors.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 190 IVI Foundation

11. Repeated Capability Collection Base Interfaces

11.1 Overview

IVI.NET provides two base interfaces that are used in the implementation of IVI.NET repeated
capability collections. For more information on the use of these interfaces, refer to section 4,
Repeated Capability Group, of 1VI-3.3: Standard Cross-Class Capabilities Specification, and
section 12, Repeated Capabilities, of 1VI-3.4: API Style Guide.

All IVL.NET repeated capability collection interfaces extend IlviRepeatedCapabilityCollection,
either directly or indirectly.

All IVL.NET interfaces that represent instances of a repeated capability collection extend
IlviRepeatedCapabilityldentification, either directly or indirectly.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 191 IVI Foundation

11.2 llviRepeatedCapabilityCollection<T>

<T> is the interface that represents instances of a repeated capability collection. If there are
multiple interfaces that represent a collection instance, <T> is the one that is returned by the
collection.

The llviRepeatedCapabilityCollection interface extends the following interface:
e IEnumerable<T>

The llviRepeatedCapabilityCollection interface defines the following properties:
e Count

e [tem Indexer

IVI1-3.18: .NET Utility Classes and Interfaces Specification 192 IVI Foundation

11.2.1 Count

Data Type

Access

Applies to

Coercion

High Level Functions

Vilnt32

RO

<RC>s

None

.NET Property Name

Count

Description

Specifies the number of repeated capabilities in the collection.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,

and warning events that may be raised, by this property.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

193 IVI Foundation

11.2.2 Item Indexer

Data Type

Access

Applies to

Coercion

High Level
Functions

T

RO

llviRepeatedCapabilityCollection

None

.NET Property Name
T this[String name];

Description

Item uniquely identifies an instance of a repeated capability in the repeated capability collection. It
returns an interface reference which can be used to control the attributes and other functionality of

that repeated capability.

The .NET indexer takes a repeated capability name If the user passes an invalid value for the name
parameter, the indexer returns an error.

Valid names include physical repeated capability identifiers and virtual repeated capability
identifiers.

.NET Exceptions

The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this indexer.

IVI1-3.18: .NET Utility Classes and Interfaces Specification

194

IVI Foundation

11.3 llviRepeatedCapabilityldentification
The llviRepeatedCapabilityldentification interface defines the following properties:

e Name

IVI1-3.18: .NET Utility Classes and Interfaces Specification 195 IVI Foundation

11.3.1 Name

Data Type | Access Applies to Coercion High Level Functions

ViString R <RC> None

.NET Property Name
Name

Description
Returns the physical repeated capability identifier defined by the specific driver for the repeated
capability that corresponds to the index that the user specifies. If the driver defines a qualified
repeated capability name, this property returns the qualified name.

.NET Exceptions
The 1VI1-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

Compliance Notes

For an instrument with only one repeated capability, i.e. the Count attribute is one, the driver may
return an empty string.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 196 IVI Foundation

12. LockManager Class

The LockManager is a concrete class provided by the IVI Foundation to aid driver developers in
implementing multithread locking within an IVI.NET driver. IVIL.NET drivers are not required to
use the LockManager, but it does provide all three levels of multithread locking as described in
Section 4.3.11, Multithread Safety, of IVI-3.1: Driver Architecture Specification.

The LockManager exposes one public constructor and two public methods.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 197 IVI Foundation

12.1 LockManager Constructor

The LockManager.class exposes the following public constructor:

LockManager (IIviDriver driver,
LockType requestedLockType,
String accessKey)

An instance of an IVI.NET driver instantiates a single instance of the LockManager and uses that
LockManager instance to: a) obtain a multithread lock within a single driver method, and b) to
implement the two overloads of IlviDriverUtility.Lock.The first parameter of the constructor
represents the instance of the driver that will use the LockManager. The second two parameters
match the lockType and accessKey parameters of the IVI.NET driver constructor. Refer to
Section 8, IVI.NET Constuctors, of 1VI-3.2: Inherent Capabilities Specification, for an explanation
of these IVI.NET driver constructor parameters.

If requested lock type is LockType.Process, and the access key is the empty string, then the lock
requested is an instance-wide lock.

If requested lock type is LockType.Process, and the access key is not the empty string, then the
lock requested is a process-wide lock.

If requested lock type is LockType.Machine, the access key may not be the empty string, and the
lock requested is a machine-wide lock.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 198 IVI Foundation

12.2 LockManager Lock method

The LockManager class exposes the following two public methods:

IIviDriverLock Lock ()
IIviDriverLock Lock (PrecisionTimeSpan maximumTime)

These methods are used to implement the IlviDriverUtility.Lock methods. The IVI.NET driver
implementation delegates to these two methods on the LockManager class. Refer to Section 6.18,
Lock Session, of 1VI-3.2: Inherent Capabilities Specification, for details on the
IlviDriverUtility.Lock methods.

.NET Exceptions

The 1VI-3.2: Inherent Capabilities Specification defines general exceptions that may be thrown,
and warning events that may be raised, by this property.

Note that the .NET MaxTimeExceededException is defined in 1VI-3.2: Inherent Capabilities
Specification.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 199 IVI Foundation

12.3 Example Usage

The following C# code demonstrates the intended usage of the LockManager class within a
fictious driver named "Acme4301".

public class Acmed4301
{

private LockManager lockManager;

public Acme4301 (String resourceName, Boolean idQuery, Boolean reset,
LockType lockType, String accessKey, String options)
{
// Cache a single instance of the LockManager for the entire driver
_lockManager = new LockManager (this, lockType, accessKey);

}

public IIviDriverLock Lock()

{
// Use LockManager to implement external locking across method calls
return lockManager.Lock() ;

}

public void Configure (Double Range, Double Resolution)
{
// Use LockManager to implement internal locking within a method call
using (this.Lock())
{
// ... send device command

}

IVI1-3.18: .NET Utility Classes and Interfaces Specification 200 IVI Foundation

13. Enumerations

13.1 Auto

The Auto enumeration provides the value need for automatic setting properties that implement a
“Once” option. Automatic setting properties that only use “On” and “Off” should be implemented

as Booleans.

Name

Description

Language Identifier Value

Auto Off

Disables auto-<Name>. The instrument sets the <Name> attribute to the value it
most recently calculated. Further queries of the <Name> attribute return the
actual value.

NET Auto.Off 0

Auto On

Sets the instrument to calculate the auto setting’s primary attribute automatically.
When On, the actual value for auto setting’s primary attribute as automatically
determined by the instrument is returned by the auto setting’s primary attribute
attribute

Setting the auto setting’s primary attribute attribute also sets the automatic setting
attribute to Auto Off.

| NET | Auto.on | 1

Auto Once

Sets the instrument to calculate <Name> exactly once, before its next use. After its
next use, the instrument uses the calculated value of <Name> for subsequent uses.
Further queries of the <Name> attribute return the actual value.

| NET | Auto.Once | 2

13.2 Slope

The Slope enumeration provides the standard “Positive” and “Negative” values for slope.

Name Description
Language Identifier Value
Negative Sets slope to negative.
| NET | Slope.Negative | 0
Positive Sets slope to positive.
| NET | Slope.Positive | 1

IVI1-3.18: .NET Utility Classes and Interfaces Specification 201 IVI Foundation

14. Standard TriggerSource Class

The TriggerSource class provides drivers and clients with a standard way to use the standard
trigger source values. The standard trigger source values are defined in 1VI-3.3, Standard Cross

Class Capabilities Specification, Section 3, Standard Trigger Source Values.

The TriggerSource class is a static class with static properties. Each property is named for a
trigger source and returns the standard string value for that source. Property names and returned
values are shown in the table below. All properties are read-only.

Property Name String Return Value
None String.Empty
Immediate “Immediate”
External “External”
Internal “Internal”
Software “Software”
Get “GET”
ACLine “ACLine”
Interval “Interval”
Lan0 “LANO”
Lanl “LAN1”
Lan2 “LAN2”
Lan3 “LAN3”
Lan4 “LAN4”
Lan5 “LAN5”
Lan6 “LANG”
Lan7 “LAN7”

Lxi0 “LXI0”
Lxil “LXI1”
Lxi2 “LXI2”
Lxi3 “LXI3”
Lxi4 “LXI4”
Lxi5 “LXI5”
Lxi6 “LXI6”
Lxi7 “LXI7”
TtlO “TTLO”
Ttl1 “NTTLL”
Ttl2 “NTTL2”
Ttl3 “TTL3”
Ttl4 “TTL4”
Ttl5 “TTL5”

IVI1-3.18: .NET Utility Classes and Interfaces Specification

202

IVI Foundation

Ttl6 “TTL6”

Ttl7 “TTL7”

EclO “ECLO”

Ecl1 “ECL1”
PxiClk10 “PXI CLK10”
PxiStar “PXI_STAR”
PxiTrigger0 “PXI TRIGO”
PxiTriggerl “PXI TRIGL”
PxiTrigger2 “PXI TRIG2”
PxiTrigger3 “PXI TRIG3”
PxiTrigger4 “PXI TRIG4”
PxiTrigger5 “PXI TRIG5”
PxiTrigger6 “PXI TRIG6”
PxiTrigger7 “PXI TRIG7”

PxiExpressClk100

“PXIe CLK100

PxiExpressDStarA

“PXIe DSTARA”

PxiExpressDStarB

“PXIe DSTARB”

PxiExpressDStarC

“PXIe DSTARC”

Rtsi0 “RTSIO”
Rtsil “RTSI1”
Rtsi2 “RTSI2”
Rtsi3 “RTSI3”
Rtsi4 “RTSI4”
Rtsi5 “RTSI5”
Rtsi6 “RTSI6”
Rtsi7 “RTSI7”

The Triggersource class also overloads the Equals method. Note that the Equals method will

validate either String. Empty or the string “None” as a standard value.

Method Name

Equals

IVI1-3.18: .NET Utility Classes and Interfaces Specification

203

IVI Foundation

15. IVI.LNET Utility Classes and Interfaces Exceptions

This section defines the list of IVI.NET exceptions specific to the IVI.NET utility classes and
interfaces. For general information on IVI.NET exceptions and warnings, refer to 1VI-3.1: Driver
Architecture Specification and section 12, Common IVI.NET Exceptions and Warnings, of 1VI-3.2:
Inherent Capabilities Specification.

15.1 IVLLNET Exceptions

The following exceptions defined in the .NET Framework are used by properties and methods
defined in this specifciation.

DataArrayTooSmallException

InvalidSpectrumDataTypeException

InvalidWaveformDataTypeException

NotATimeException

ValidPointCountExceedsCapacityException

Note that other exceptions defined by the .NET Framework may be thrown by IVI.NET drivers,
but only if there is not an IV defined exception that can be used instead.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 204 IVI Foundation

15.1.1 ValidPointCountExceedsCapacityException

Description

The specified valid point count exceeds the capacity of the waveform or spectrum.

Exception

Ivi.Driver

Constructors

Ivi.Driver

Ivi.Driver

Ivi.Driver

Ivi.Driver

.ValidPointCountExceedsCapacityException

.ValidPointCountExceedsCapacityException (

String validPointCount,
String capacity);

.ValidPointCountExceedsCapacityException () ;

.ValidPointCountExceedsCapacityException (

String message) ;

.ValidPointCountExceedsCapacityException (

String message,
System.Exception innerException);

Parameters
Inputs Description Base Type
validPointCount The valid point count specified in the waveform or String
spectrum configure method.
capacity The capacity of the waveform or spectrum. String

Default Message String

The specified valid point count exceeds the capacity of the waveform or
spectrum object’s data array.

Valid point count: <validPointCount>

Destination object’s capacity: <capacity>

Usage

Avoid using this exception to relay another exception. As a general rule, just let the original
exception propagate up.

If driver developers specify the message string, they are responsible for message string

localization.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 205 IVI Foundation

15.1.2 DataArrayTooSmallException

Description

The measured waveform or spectrum exceeds the capacity of the waveform or spectrum.

Exception

Ivi.Driver.DataArrayTooSmallException

Constructors

Ivi.Driver.DataArrayTooSmallException (String measuredElements,
String capacity);

Ivi.Driver.DataArrayTooSmallException () ;
Ivi.Driver.DataArrayTooSmallException (String message) ;

Ivi.Driver.DataArrayTooSmallException (String message,
System.Exception innerException);

Default Message String

The mesured waveform or spectrum exceeds the capacity of the waveform or
spectrum object’s data array.

Measured elements: <measuredElements>

Destination object’s capacity: <capacity>

Parameters
Inputs Description Base Type
measuredElements The measured number of elements. String
capacity The capacity of the waveform or spectrum. String
Usage

Avoid using this exception to relay another exception. As a general rule, just let the original
exception propagate up.

If driver developers specify the message string, they are responsible for message string
localization.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 206 IVI Foundation

15.1.3 InvalidSpectrumDataTypeException

Description

The spectrum class does support data arrays of the specified type.

Exception

Ivi.Driver.InvalidSpectrumDataTypeException

Constructors

Ivi.Driver.InvalidSpectrumDataTypeException (String message
String type);

Ivi.Driver.InvalidSpectrumDataTypeException () ;
Ivi.Driver.InvalidSpectrumDataTypeException (String message) ;
Ivi.Driver.InvalidSpectrumDataTypeException (String message,

System.Exception
innerException) ;

Default Message String

The spectrum class does not support data arrays of the specified type.
Type: <type>

Parameters
Inputs Description Base Type
type The specified waveform or spectrum type. String
Usage

Avoid using this exception to relay another exception. As a general rule, just let the original
exception propagate up.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 207 IVI Foundation

15.1.4 InvalidWaveformDataTypeException

Description

The waveform class does support data arrays of the specified type.

Exception

Ivi.Driver.InvalidWaveformDataTypeException

Constructors

Ivi.Driver.InvalidSpectrumDataTypeException (String message
String type);

Ivi.Driver.InvalidWaveformDataTypeException () ;
Ivi.Driver.InvalidWaveformDataTypeException (String message) ;
Ivi.Driver.InvalidWaveformDataTypeException (String message,

System.Exception
innerException) ;

Default Message String

The waveform class does not support data arrays of the specified type.
Type: <type>

Parameters
Inputs Description Base Type
type The specified waveform or spectrum type. String
Usage

Avoid using this exception to relay another exception. As a general rule, just let the original
exception propagate up.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 208 IVI Foundation

15.1.5 NotATimeException

Description

The PrecisionDateTime value is Not a Time (NaT).

Exception

Ivi.Driver.NotATimeException

Constructors

Ivi.Driver.NotATimeException (String
String

Ivi.Driver.NotATimeException () ;
Ivi.Driver.NotATimeException (String

Ivi.Driver.NotATimeException (String

System.

Default Message String

message,
paramName) ;

message) ;

message,
Exception innerException);

The PrecisionDateTime value is Not a Time (NaT).

Parameter name: <paramName>

Parameters
Inputs Description Base Type
paramName The name of the PrecisionDateTime parameter whose String
value is Not a Time (NaT).
Usage

This exception will not generally be used to relay another exception.

This exception is thrown extensively by IVI.NET PrecisionDateTime class distributed by the VI
Foundation as part of the IVI.NET Shared Components. It may also be thrown by drivers.

IVI1-3.18: .NET Utility Classes and Interfaces Specification 209 IVI Foundation

