
Interchangeable

Instruments
VirtualIVI

IVI-3.17: Installation Requirements
Specification

Octomber 19, 2018 Edition
Revision 2.7

IVI Foundation 2 IVI-3.17: Installation Requirements Specification

Important Information

IVI-3.17: Installation Requirements Specification is authored by the IVI Foundation member companies. For

a vendor membership roster list, please visit the IVI Foundation web site at www.ivifoundation.org.

The IVI Foundation wants to receive your comments on this specification. You can contact the Foundation

through the web site at www.ivifoundation.org.

Warranty
The IVI Foundation and its member companies make no warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

The IVI Foundation and its member companies shall not be liable for errors contained herein or for incidental

or consequential damages in connection with the furnishing, performance, or use of this material.

Trademarks

Product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

http://www.ivifoundation.org/
http://www.ivifoundation.org/

IVI-3.17: Installation Requirements Specification 3 IVI Foundation

Important Information ... 2

Warranty 2

Trademarks 2

IVI-3.17: Installation Requirements Specification 7

1. Overview of the IVI Installation Requirements Specification 9
1.1 Introduction ... 9

1.2 Definition of Installation Terms ... 9

1.3 Definition of IVI Installation Terms .. 10

1.3.1 Definition of IVI-COM/IVI-C Installation terms .. 11
1.3.2 Definition of IVI.NET Installation Terms ... 12
1.3.3 Definition of IVI Driver Installer Bitness Types ... 15

2. Features and Intended Use of Installers .. 17
2.1 Introduction ... 17

2.2 Installers ... 17

2.3 IVI Driver Installation ... 17

2.3.1 IVI-COM/IVI-C Driver Installation .. 17
2.3.1.1 IVI-COM/IVI-C Driver Installers and Bitness ... 17

2.3.1.1.1 Valid Uses of Driver Installer Bitness Types for IVI-COM/IVI-C Driver

Installers ... 17
2.3.1.1.2 Recommended IVI-COM/IVI-C Driver Installer Approach 19

2.3.2 IVI.NET Driver Installation .. 19
2.3.2.1 IVI.NET Driver Installers and Bitness ... 19

2.3.2.1.1 Valid Uses of Driver Installer Bitness Types for IVI.NET Driver

Installers ... 19
2.3.2.1.2 Recommended IVI.NET Driver Installer Approach 21
2.3.2.1.3 IVI.NET Driver Installers and .NET Framework Versions 21
2.3.2.1.4 IVI.NET Driver Installers and Design-Time Support 21

IVI Foundation 4 IVI-3.17: Installation Requirements Specification

2.4 IVI Shared Component Installation .. 21

2.4.1 IVI-COM/IVI-C Shared Component Installation .. 21
2.4.2 IVI.NET Shared Component Installation .. 23

2.5 IVI Directory Structure ... 24

2.5.1 IVI-COM/IVI-C Directory Structure ... 24
2.5.1.1 IVI-COM/IVI-C Directory Structure Diagrams ... 25
2.5.1.2 IVI-COM/IVI-C Standard Directory Tree .. 26
2.5.1.3 Creation of the IVI-COM/IVI-C Standard Directory Tree 26
2.5.1.4 Contents of the IVI-COM/IVI-C Standard Directory Tree 26
2.5.1.5 Recommendations for Users .. 27

2.5.2 IVI.NET Directory Structure ... 28
2.5.2.1 IVI.NET Directory Structure Diagrams ... 29
2.5.2.2 IVI.NET Standard Directory Tree .. 30
2.5.2.3 Creation of the IVI.NET Standard Directory Tree ... 30
2.5.2.4 Contents of the IVI.NET Standard Directory Tree ... 30
2.5.2.5 Recommendations for Users .. 31

2.6 Wrapper Packaging in IVI Driver Installers ... 31

3. Requirements for General Behavior of IVI Installers 32
3.1 Silent and Dialog Installation Modes ... 32

3.2 Handling Failures .. 32

3.3 Handling User Termination of Installer .. 32

3.4 Reversing Incomplete Installations .. 32

3.5 Installer Logging ... 33

4. IVI Directory Structure Creation and Detection Requirements 34
4.1 IVI Standard Root Directory and IVI Data Directory ... 34

4.1.1 IVI-COM/IVI-C Shared Component Installer Responsibilities ... 34
4.1.1.1 32-bit and 64-bit IVI-COM/IVI-C Shared Component Installer Responsibilities 34
4.1.1.2 Additional 64-bit IVI-COM/IVI-C Shared Component Installer Responsibilities 35

4.1.2 IVI-COM/IVI-C Driver Installer Responsibilities ... 37
4.1.2.1 Driver Installer Responsibilities on 32-bit Operating Systems 37
4.1.2.2 32-bit Driver Installer Responsibilities on 64-bit Operating Systems 38
4.1.2.3 64-bit Driver Installer Responsibilities .. 38

4.2 IVI.NET Standard Root Directory .. 39

4.2.1 IVI.NET Shared Component Installer Responsibilities ... 39
4.2.1.1 32-bit and 64-bit IVI.NET Shared Component Installer Responsibilities 39
4.2.1.2 Additional 64-bit IVI.NET Shared Component Installer Responsibilities 40

4.2.2 IVI.NET Driver Installer Responsibilities ... 41
4.2.2.1 Driver Installer Responsibilities on 32-bit Operating Systems 41
4.2.2.2 32-bit Driver Installer Responsibilities on 64-bit Operating Systems 42
4.2.2.3 64-bit Driver Installer Responsibilities .. 42

4.2.3 Registering IVI.NET Design-Time Assemblies .. 42
4.3 Determining System Directories and Registry Keys ... 43

IVI-3.17: Installation Requirements Specification 5 IVI Foundation

4.4 IVI Shared Component Installer Responsibilities on Windows 7, Windows 8, and Windows 1044

4.5 IVI Driver Installer Responsibilities on Windows 7, Windows 8, and Windows 10 44

5. IVI Driver Installer Requirements ... 45
5.1 IVI-COM/IVI-C Driver Installation Procedure ... 45

5.1.1 Detecting the Presence and Version of the IVI-COM/IVI-C Shared Components 46
5.1.2 Detecting the Presence, Vendor, and Version of an IVI-COM or IVI-C Driver 46
5.1.3 Calling the IVI-COM/IVI-C Shared Component Installer .. 47
5.1.4 IVI-COM/IVI-C Software Module Entries in the IVI Configuration Store 47
5.1.5 IVI-COM/IVI-C Driver Uninstaller .. 49
5.1.6 Installation of Vendor Specific Shared Components ... 49
5.1.7 Installation of IVI-COM/IVI-C Driver Start Menu Items for Windows 7 and Windows 10 . 50
5.1.8 Installation of IVI-COM/IVI-C Driver Start and Apps Screen Tiles for Windows 8 and

Windows 10 ... 51
5.2 IVI.NET Driver Installation Procedure .. 51

5.2.1 Detecting the Presence of an IVI.NET Shared Components Variant 52
5.2.2 Detecting the Presence and Vendor of an IVI.NET Driver Variant 52
5.2.3 Calling the IVI.NET Shared Component Installer ... 53
5.2.4 IVI.NET Software Module Entries in the IVI Configuration Store 53
5.2.5 IVI.NET Driver Uninstaller ... 54
5.2.6 Installation of Vendor Specific Shared Components ... 54
5.2.7 Installation of IVI.NET Driver Start Menu Items on Windows 7 and Windows 10 54
5.2.8 Installation of IVI.NET Driver Start and Apps Screen Tiles for Windows 8 and Windows 1055

5.3 Details on Software Module Entries in the IVI Configuration Store .. 55

5.3.1 Including Published API Collections in the IVI Configuration Store 55
5.3.2 Including Repeated Capability Identifiers in the IVI Configuration Store 56
5.3.3 Defining Configurable Initial Settings in the IVI Configuration Store 56

6. IVI Shared Component Installer Requirements 60
6.1 Overview .. 60

6.2 IVI Shared Component Versioning ... 60

6.3 IVI Shared Component Installation .. 60

6.3.1 IVI-COM/IVI-C Shared Component Installation .. 60
6.3.1.1 IVI-COM/IVI-C Shared Component Cleanup Utility Requirements 61

6.3.2 IVI.NET Shared Component Installation .. 62
6.3.2.1 IVI.NET Shared Componet Uninstaller ... 63

6.4 IVI Shared Component Installer Files ... 63

6.4.1 IVI Shared Component Installer File Formats ... 63
6.4.1.1 IVI Shared Component .exe Installers.. 63

6.4.1.1.1 IVI-COM/IVI-C Shared Component .exe Installer File Name 63
6.4.1.1.2 IVI.NET Shared Component .exe Installer File Name........................ 63

6.4.1.2 IVI Shared Component .msi Installers ... 64
6.4.1.2.1 IVI-COM/IVI-C Shared Component .msi Installer File Names 64
6.4.1.2.2 IVI.NET Shared Component .msi Installer File Names 64

6.4.2 IVI.NET Shared Component Installer Responsibilities ... 64

IVI Foundation 6 IVI-3.17: Installation Requirements Specification

7. Installer Interface Requirements .. 65
7.1 IVI Shared Component Installer Command Line Syntax .. 65

7.1.1 IVI-COM/IVI-C Shared Component Installer Command-Line Syntax 65
7.1.2 IVI.NET Shared Component Installer Command Line Syntax ... 65

7.2 IVI Driver Installer Command Line Capabilities .. 65

8. Registry Requirements ... 67
8.1 IVI-COM Registry Requirements .. 67

8.2 IVI-C Registry Requirements .. 71

8.3 IVI.NET Registry Requirements .. 72

9. Example Scenarios and Directories .. 73

Appendix A: Example: IVI-COM/IVI-C Driver Installer Scenarios 74

Appendix B: Example: IVI.NET Driver Installer Scenarios 77

Appendix C : Example : IVI-COM/IVI-C Installation Directories 78

Appendix D : Example : IVI.NET Installation Directories 85

IVI-3.17: Installation Requirements Specification 7 IVI Foundation

IVI-3.17: Installation Requirements
Specification

IVI Installation Requirements Revision History

This section is an overview of the revision history of the IVI Installation Requirements specification.

Table 1-1. IVI Installation Requirements Specification Revisions

Revision Number Date of Revision Revision Notes

Revision 1.0 March 30, 2009 Original release. Created from the Section 6, Installation

Requirements, in IVI-3.1: Driver Architecture Specification.

Revision 1.1 February 19, 2010 Editorial changes to add Windows 7 as a supported OS.

Revision 2.0 June 9, 2010 Added .NET architecture

Revision 2.0 June 30, 2011 Editorial change: Added text to permit placing some files in

locations determined by the driver vendor.

Revision 2.1 January 13, 2012 Minor change: Added Section 6.4. Modified Sections 7.1.1

and 7.1.2.

Revision 2.2 March 6, 2013 Minor changes to add Windows 8 as a supported OS.

Revision 2.3 Dec. 3, 2013 Minor change: Change the IVI.NET Component Version-

Specific Directory name to use <FullVersion> rather than

<MajorMinorVersion>. Change all descriptive text to

reflect this. Remove all text that describes .NET installation

behavior peculiar to changing only the Build revision

number. Remove the definition of <MajorMinorVersion>.

Revision 2.3 May 9, 2014 Editorial change: Added text in Section 4.2.3 to more

explicitly permit vendors to point AssemblyFoldersEx

registry keys to assemblies in vendor-specific locations and

to suggest that vendors may register older versions of

assemblies.

Revision 2.3 September 5, 2014 Editorial change: In Sections 6.3.1 and 6.3.2, added a

requirement that the user must accept the IVI Foundation

License in the IVI Shared Components and IVI.NET Shared

Components installers to proceed with installation.

Revision 2.3 December 10, 2014 Editorial changes: In sections 2.3.1.1.2 and 2.3.2.1.2, added

text to allow bundling the 32-bit and 64-bit installers into

one .exe file; in Section 2.3.2, recommended side-by-side

installation; in Section 2.5.2.1 removed parantheses from

around FullVersion in Component Version-Specific

Directories; in Section 4.2.3, Table 4-5, added parentheses

around FwkVerShortName in the name of the registry key

under AssemblyFoldersEx and distinguish between driver

installers and IVI.NET shared component installer; in

Section 5.2, step 7, added a sentence about policy file.

Revision 2.4 February 11, 2015 Minor change: In Section 6.4.1, addressed naming and

availability of the IVI shared component .exe installer files

IVI Foundation 8 IVI-3.17: Installation Requirements Specification

Table 1-1. IVI Installation Requirements Specification Revisions

and .msi installer files.

Revision 2.4 August 6, 2015 Editorial changes to remove Windows 2000 and add

Windows 10 as supported operating systems

Revision 2.5 June 7, 2016 Minor change to remove support for Windows XP and

Windows Vista

Revision 2.6 November 03, 2016 In Section 4.4, reversed the policy of unlocking the IVI

directory to a policy of locking the IVI directory in the IVI

Shared Component installer.

Revision 2.7 November 18, 2016 Minor change to add a directory for 4.6 to the .NET

Framework Version Directories and to clarify where to

install drivers that require a patch version of the .NET

Framework.

Revision 2.7 October 19, 2018 Editorial change to the 4.2.3 to change <CLRVersion> to

<TargetFrameworkVersion>.

IVI-3.17: Installation Requirements Specification 9 IVI Foundation

1. Overview of the IVI Installation Requirements Specification

1.1 Introduction

This section specifies the required and optional features for the installation programs that install IVI drivers

and IVI shared components on user systems. This section identifies the features for which the IVI

Foundation allows installation programs flexibility in implementation.

1.2 Definition of Installation Terms

The following are some commonly used installation terms within this section.

Dialog Mode Installation

The default user interface mode of installation. Users interact with the installer to set installation options.

The installer displays status information to the user.

Silent Mode Installation

A user interface mode of installation where the user does not interact with the installer user interface to set

installer options. Instead, installer options are set on the command-line.

MSI

Microsoft Installer for Windows. A technology developed by Microsoft for installing software components

on Windows operating systems.

User Account Control (UAC)

A Windows 7 and later feature that manages user and application security privileges.

Standard Privileges

The default UAC privileges on Windows 7 and later for all applications.

Admin Privileges

The elevated (full) UAC privileges on Windows 7 and later that allow applications to perform administrative

tasks.

Global Assembly Cache (GAC)

The cache used to store and list public/shared .NET assemblies available on the system.

IVI Foundation 10 IVI-3.17: Installation Requirements Specification

1.3 Definition of IVI Installation Terms

The following are commonly used IVI installation terms within this section.

IVI Installer

An installation program that implements the requirements specified by the IVI Foundation for the purpose of

installing IVI drivers or IVI shared components.

IVI Driver Installer

An IVI installer that installs IVI driver files.

IVI Standard Directory Tree

The directory tree into which driver installations place all files, except for files that must be in directories

specific to ADEs and files installed to the GAC. The IVI shared components are also installed in the IVI

standard directory tree.

IVI Standard Root Directory <IVIStandardRootDir>

The root of the IVI standard directory tree for all driver installations and shared component installations.

Windows 7 (32-bit), Windows 8 (32-bit), and Windows 10 (32-bit) have only a 32-bit IVI standard root

directory. Windows 7 (64-bit), Windows 8 (64-bit), and Windows 10 (64-bit) have both a 32-bit IVI standard

root directory and a 64-bit IVI standard root directory.

In this specification, <IVIStandardRootDir> refers to the 32-bit IVI standard root directory or the 64-bit

IVI standard root directory, depending on whether the application, driver, or installer is 32-bit or 64-bit. The

term <IVIStandardRootDir32> refers to the 32-bit IVI standard root directory and the term

<IVIStandardRootDir64> refers to the 64-bit IVI standard root directory.

The default IVI standard root directory is <ProgramFilesDir>\IVI Foundation\IVI. Refer to Section

0,4.2

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in

the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <ProgramFilesDir>.

IVI Data Directory <IVIDataDir>

The IVI data directory contains the master IVI configuration store. The IVI data directory does not contain

driver specific or vendor specific files. The default IVI data directory is <ProgramDataDir>\IVI

Foundation\IVI. Refer to Section 0,4.2

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in

the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <ProgramDataDir>.

IVI-3.17: Installation Requirements Specification 11 IVI Foundation

Full Version <FullVersion>

The Full Version defines the version of the product in <Major.Minor.Build> format.

The Build field indicates the patch level.

1.3.1 Definition of IVI-COM/IVI-C Installation terms

IVI-COM/IVI-C Shared Components

The set of shared components that IVI-COM and IVI-C drivers use.

IVI-COM/IVI-C Installer

An installation program that implements the requirements specified by the IVI Foundation for the purpose of

installing IVI-C drivers, IVI-COM drivers or IVI-COM/IVI-C shared components.

IVI-COM/IVI-C Driver Installer

An IVI installer that installs IVI-C and/or IVI-COM driver files.

IVI-COM/IVI-C Shared Component Cleanup Utility

A utility created and distributed by the IVI Foundation that removes IVI-COM/IVI-C shared component files

and registry entries from a system.

IVI-COM/IVI-C Standard Directory Tree

The directory tree into which IVI-COM and IVI-C driver installations place all files, except for files that must

be in directories specific to ADEs and files installed into the GAC. The IVI-COM/IVI-C shared components

are also installed in the IVI standard directory tree.

IVI-COM/IVI-C Shared Component Installer

An installer developed and distributed by the IVI Foundation that creates the directory tree for IVI-COM/IVI-

C shared component files and driver files, installs all the IVI-COM/IVI-C shared component files, and creates

the directory and registry entries for the master IVI configuration store.

The term 32-bit IVI-COM/IVI-C Shared Component Installer refers to the IVI-COM/IVI-C shared

component installer that installs on a 32-bit operating system, and the term 64-bit IVI-COM/IVI-C Shared

Component Installer refers to the IVI-COM/IVI-C shared component installer that installs on a 64-bit

operating system.

Standard IVI-COM/IVI-C Driver Specific Directory

The directory into which an IVI-COM/IVI-C driver installer places files that it does not disperse to the

standard common files directories or a standard directory of an ADE. The standard driver specific directory

is <IVIStandardRootDir>\Drivers\<ComponentIdentifier> for IVI-COM drivers or

IVI Foundation 12 IVI-3.17: Installation Requirements Specification

<IVIStandardRootDir>\Drivers\<Prefix> for IVI-C drivers or for IVI-COM drivers that are

packaged with C wrappers.

IVI-COM/IVI-C Shared Component Directory

The directory that the IVI Foundation specifies to contain the shared component files that are not installed

into the standard common files directories. The IVI-COM/IVI-C shared component directory is

<IVIStandardRootDir>\Components.

Dispersed File

An IVI-COM or IVI-C driver file or shared component file that is installed into one of the standard common

files directories or into a standard directory of the operating system, an ADE, or another application program.

Non-dispersed File

An IVI-COM or IVI-C driver file or shared component file that is not installed into one of the standard

common files directories or into a standard directory of the operating system, an ADE, or another application

program. A non-dispersed driver file is installed into the standard driver specific directory for the driver. A

non-dispersed shared component file is installed into the IVI shared component directory tree. Examples of

non-dispersed files include help documentation, source code, and compliance documents.

Standard Common Files Directories

The directories that the IVI Foundation specifies to contain certain common types of files, such as DLLs,

import libraries, and include files. It is useful to place these common types of files into separate directories

so that ADEs can find them. The standard common files directories are in the IVI standard root directory and

contain IVI-COM/IVI-C shared component files as well as IVI-COM and IVI-C driver files.

Note: An installer disperses files when it installs them into the standard common files directories or into a

standard directory of the operating system, an ADE, or another application program.

1.3.2 Definition of IVI.NET Installation Terms

IVI.NET Shared Components

The set of shared components thatIVI.NET drivers use.

IVI.NET Installer

An installation program that implements the requirements specified by the IVI Foundation for the purpose of

installing IVI.NET drivers or IVI.NET shared components.

IVI.NET Driver Installer

An IVI.NET installer that installs IVI.NET driver files. Because IVI.NET driver files install into a different

part of the IVI directory hierarchy and multiple versions of the same driver may install side-by-side, the

requirements for IVI.NET drivers are different than the requirements for IVI-COM and IVI-C drivers.

IVI-3.17: Installation Requirements Specification 13 IVI Foundation

IVI.NET Shared Component Installer

An IVI.NET installer created and distributed by the IVI Foundation that installs all the IVI.NET shared

component files. Because the IVI.NET shared component files install into a different part of the IVI directory

hierarchy and multiple versions of the shared components may install side-by-side, the requirements for

installing IVI.NET shared components are different than the requirements for installing IVI-COM/IVI-C

shared components.

The IVI.NET shared component installer does not create the standard IVI root directory or the directory and

registry entries for the master IVI configuration store. Thus, neither the IVI.NET shared component installer

nor IVI.NET driver installers work unless the IVI-COM/IVI-C shared component installer has been

successfully executed on the machine.

The term 32-bit IVI.NET Shared Component Installer refers to the IVI.NET shared component installer that

installs on a 32-bit operating system, and the term 64-bit IVI.NET Shared Component Installer to refers to the

IVI.NET shared component installer that installs on a 64-bit operating system.

IVI.NET Standard Directory Tree

The directory tree into which IVI.NET driver installations place all files, except for files that must be in

directories specific to ADEs and files installed into the GAC. The IVI.NET shared components are also

installed in the IVI.NET standard directory tree.

IVI.NET Standard Root Directory <IviNetStandardRootDir>

The root of the IVI.NET standard directory tree for all IVI.NET driver and shared component installations.

Windows 7 (32-bit), Windows 8 (32-bit), and Windows 10 (32-bit) have only a 32-bit IVI.NET standard root

directory. Windows 7 (64-bit), Windows 8 (64-bit), and Windows 10 (64-bit) have both a 32-bit IVI.NET

standard root directory and a 64-bit IVI.NET standard root directory.

In this specification, <IviNetStandardRootDir> refers to the 32-bit IVI.NET standard root directory or

the 64-bit IVI.NET standard root directory, depending upon whether the application, driver, or installer is 32-

bit or 64-bit. The term <IviNetStandardRootDir32> refers to the 32-bit IVI.NET standard root directory

and the term <IviNetStandardRootDir64> refers to the 64-bit IVI.NET standard root directory.

The IVI.NET standard root directory is <IVIStandardRootDir>\Microsoft.NET.

IVI.NET Framework Platform Directory <IVINetFrameworkPlatformDir>

The IVI.NET framework platform directory provides the location for all IVI.NET drivers and shared

components that are specific to one of the following: 32-bit support or 64-bit support.

Windows 7 (32-bit), Windows 8 (32-bit), and Windows 10 (32-bit) have only a 32-bit IVI.NET framework

platform directory. Windows 7 (64-bit), Windows 8 (64-bit), and Windows 10 (64-bit) have both a 32-bit

IVI.NET framework platform directory and a 64-bit IVI.NET framework platform directory.

In this specification, <IVINetFrameworkPlatformDir> refers to the 32-bit IVI.NET framework platform

directory or the 64-bit IVI.NET framework platform directory, depending upon the whether the application,

driver, or installer is 32-bit or 64-bit. The term <IVINetFrameworkPlatformDir32> refers to the 32-bit

IVI.NET framework platform directory and the term <IVINetFrameworkPlatformDir64> refers to the

64-bit IVI.NET framework platform directory.

IVI Foundation 14 IVI-3.17: Installation Requirements Specification

The 32-bit IVI.NET framework platform directory is <IviNetStandardRootDir32>\Framework. The 64-

bit IVI.NET framework platform directory is <IviNetStandardRootDir64>\Framework64.

Framework-Dependent Variant

A version of an IVI.NET driver (or a version of the IVI.NET shared components) as considered in relation to

the minimum major.minor version of the .NET Framework that it requires.

.NET Framework Version Directories <FrameworkVersionDir>

The .NET Framework version directories provide separate locations for IVI.NET drivers and shared

components that require different minimum major.minor versions of the .NET Framework. A different .NET

Framework Version directory exists for each unique major.minor version of the .NET Framework, starting

with .NET Framework 2.0. IVI.NET drivers that require a patch version of the .NET Framework, for example

4.6.1, are installed to the corresponding major.minor folder, for example v4.6.

Prior to .NET 4.6, the value of <FrameworkVersionDir> matches the .NET Framework directory name

under %Windows%\Microsoft.NET\Framework[64]. For .NET 4.6 and later, the value of

<FrameworkVersionDir> is v<framework major version>.<framework minor version>.

The list of available frameworks and their associated values at the time of this specification are as follows:

Table 1-2. .NET Framework Version Directories

.NET Framework Major.Minor Version <FrameworkVersionDir>

2.0 v2.0.50727

3.0 v3.0

3.5 v3.5

4.0 v4.0.30319

4.5 v4.5.50709

4.6 v4.6

.NET Framework Version Short Name <FwkVerShortName>

The .NET Framework version short name is used to provide .NET Framework version-specific names for

registry keys, Software Module Table entries, and any Start Menu folders. Refer to Section 4.3.1, Target

.NET Framework Versions, in IVI-3.1: Driver Architecture Information, for specific valid values of the .NET

Framework version short name.

IVI.NET Driver Namespace <DriverNamespace>

The IVI.NET driver namespace uniquely identifies the instrument driver. Refer to Section 5.17.1, IVI.NET

Namespaces, in IVI-3.1: Driver Architecture Information, for the format of IVI.NET instrument driver

namespaces.

IVI.NET Component Version-Specific Directory

The directory into which an IVI.NET driver installer or the IVI.NET shared component installer is permitted

to install files under the IVI.NET Standard Root directory.

IVI-3.17: Installation Requirements Specification 15 IVI Foundation

For instrument drivers, the IVI.NET Component Version-Specific Directory is
<IVINetFrameworkPlatformDir>\<FrameworkVersionDir>\<DriverNamespace>

<FullVersion>.

For IVI.NET Shared Components, the IVI.NET Component Version-Specific Directory is
<IVINetFrameworkPlatformDir>\<FrameworkVersionDir>\IVIFoundationSharedComponents

<FullVersion>.

Vendors may install driver support files, such as examples, to other locations that they deem appropriate.

IVI.NET Version Identification File

The file installed by an IVI.NET driver installer or IVI.NET shared component installer to identify the

version of the driver or shared components.

For instrument drivers, the IVI.NET version identification file name shall be

<DriverNamespace>Version.dll.

For IVI.NET Shared Components, the IVI.NET version identification file name shall be

IVIFoundationSharedComponentsVersion.dll.

Design-Time Components

Components that are used to develop and compile applications. These components include assemblies,

IntelliSense help files, and online help files. Design-time assemblies are referenced by user project files and

utilized during compilation. Design-time components are installed to the appropriate IVI.NET Component

Version-Specific Directory.

Managed Run-Time Components

.NET assemblies and policy files that are utilized by user applications at run time. Managed run-time

components are installed to the GAC.

Unmanaged Run-Time Components

Files, other than .NET assemblies and policy files, that are utilized by user applications at run time.

Patching

The process of updating existing IVI.NET drivers or IVI.NET shared components by modifying the existing

version rather than installing another version side-by-side. Patching is done to fix bugs in a way such that

existing applications do not have to be rebuilt.

Note: Patching shall not be used when .NET Interface types change.

1.3.3 Definition of IVI Driver Installer Bitness Types

To avoid confusion, this specification uses a naming convention for the various types of IVI driver installers

as they relate to different driver and operating system bitnesses.

IVI Foundation 16 IVI-3.17: Installation Requirements Specification

The format for the names is:

[singular | unified] <driver bitness> driver installer [<supported operating system bitness>]

¶ “singular” denotes that the installer installs a driver of only one bitness

¶ “unified” denotes that the installer installs both 32-bit and 64-bit variants of a driver.

¶ <driver bitness> can take the form of “32-bit”, “64-bit”, or “32-bit/64-bit”.

¶ <supported operating system bitness> is used when an installer type can support operating

systems of different bitnesses and it is necessary to specify one or more particular operating

system bitness(es). It can take one of the following values “(32-bit OS)”, “(64-bit OS)”, or

“(32-bit/64-bit OS)”.

This specification uses the following set of IVI driver installer bitness types.

Singular 32-Bit Driver Installer

A singular 32-bit driver installer installs only a 32-bit version of a driver.

A singular 32-bit driver installer (32-bit OS) installs a 32-bit version of a driver on 32-bit operating systems.

This installer refuses to install on 64-bit operating systems.

A singular 32-bit driver installer (64-bit OS) installs a 32-bit version of a driver on 64-bit operating systems.

This installer refuses to install on 32-bit operating systems.

A singular 32-bit driver installer (32-bit/64-bit OS) installs a 32-bit version of a driver on both 32-bit and 64-

bit operating systems.

Singular 64-bit Driver Installer

A singular 64-bit driver installer installs only a 64-bit version of a driver on 64-bit operating systems. This

installer refuses to install on 32-bit operating systems.

Unified 32-bit/64-bit Driver Installer

A unified 32-bit/64-bit driver installer installs both a 32-bit version and a 64-bit version of a driver on 64-bit

operating systems. This installer always installs either both or neither of the drivers. This installer refuses to

install on 32-bit operating systems.

IVI-3.17: Installation Requirements Specification 17 IVI Foundation

2. Features and Intended Use of Installers

2.1 Introduction

This section describes the features and intended use of IVI installers. It provides an overview of the

installation directories and types of installers.

2.2 Installers

The IVI Foundation specifies installation requirements for two types of installation programs: an IVI driver

installer and an IVI shared component installer. Driver developers are responsible for packaging and

distribution of the IVI drivers that they create. The IVI Foundation provides an installer for all the IVI shared

components. IVI driver suppliers may distribute the IVI shared component installer. They can do so by

calling the IVI shared component installer from the IVI driver installer or by distributing the IVI shared

component installer along with the IVI driver installer.

2.3 IVI Driver Installation

2.3.1 IVI-COM/IVI-C Driver Installation

An IVI-COM/IVI-C driver installation program installs the driver files to standard directories, creates

Windows registry entries for the IVI-C or IVI-COM driver, registers the driver with the IVI configuration

store, and registers an uninstaller for the driver. All IVI-COM/IVI-C driver installations are made within a

root directory that the user specifies when installing an IVI-COM or IVI-C driver for the first time. The IVI-

COM/IVI-C shared components are also installed within the same root directory. The IVI-COM or IVI-C

driver is immediately usable after installation. Multiple versions of an installed IVI-COM or IVI-C driver

cannot co-exist on the same machine.

2.3.1.1 IVI-COM/IVI-C Driver Installers and Bitness

IVI-COM/IVI-C driver installers may install 32-bit drivers, 64-bit drivers, or both. IVI-COM/IVI-C driver

installers may run on 32-bit operating systems, 64-bit operating systems, or both.

2.3.1.1.1 Valid Uses of Driver Installer Bitness Types for IVI-COM/IVI-C Driver Installers

This section specifies the IVI driver installer bitness types that are valid for IVI-COM/IVI-C driver installers,

based on the operating systems a driver supplier supports and the bitness of the IVI-COM or IVI-C drivers

the supplier provides. For the definition of the types, refer to Section 1.3.3, Definition of IVI Driver Installer

Bitness Types.

Table 2-1. Valid installer bitness types when only a 32-bit driver is available

Supported Operating Systems Valid Combinations of Driver Installation Program Types

Only 32-bit operating systems Singular 32-bit driver installer (32-bit OS)

Only 64-bit operating systems Singular 32-bit driver installer (64-bit OS)

Both 32-bit and 64-bit operating systems Option A:

Singular 32-bit driver installer (32-bit OS)

AND

IVI Foundation 18 IVI-3.17: Installation Requirements Specification

Singular 32-bit driver installer (64-bit OS)

Note: This option is recommended for drivers that call the IVI shared

component installer or are transitioning to 64-bit driver support.

Option B:

Singular 32-bit driver installer (32-bit OS/64-bit OS)

Note: This option is recommended for drivers that do not call the IVI-

COM/IVI-C shared component installer. If the installer calls the IVI-

COM/IVI-C shared component installer, then this option requires

either calling the legacy IVI-COM/IVI-C shared component installer

or calling both the 32-bit and 64-bit IVI shared component installers.

Table 2-2. Valid installer bitness types when only a 64-bit driver is available

Supported Operating Systems Valid Combinations of Driver Installation Program Types

Only 64-bit operating systems Singular 64-bit driver installer

Table 2-3. Valid installer bitness types when both a 32-bit and a 64-bit driver are available

Supported Operating Systems Valid Combinations of Driver Installation Program Types

32-bit driver is supported on both 32-bit

and 64-bit operating systems

64-bit driver is supported on 64-bit

operating systems

Singular 32-bit driver installer (32-bit OS)

AND

Unified 32-bit/64-bit driver installer (64-bit OS)

Note: This option ensures that the driver revision for both the 32-bit

version and 64-bit version of the driver on a 64-bit operating system

are the same.

32-bit driver is supported only on 32-bit

operating systems

64-bit driver is supported on 64-bit

operating systems

Note: This excludes installation of a 32-

bit driver on a 64-bit operating system

Singular 32-bit driver installer (32-bit OS)

AND

Singular 64-bit driver installer (64-bit OS)

Note: The Singular 32-bit driver installer (32-bit OS) shall refuse to

install on 64-bit operating systems.

32 bit driver is supported only on 64-bit

operating systems

64-bit driver is supported on 64-bit

operating systems

Unified 32-bit/64-bit driver installer (64-bit OS)

Note: This ensures that the driver revision for both the 32-bit version

and 64-bit version of the driver on a 64-bit operating system are the

same.

IVI-3.17: Installation Requirements Specification 19 IVI Foundation

2.3.1.1.2 Recommended IVI-COM/IVI-C Driver Installer Approach

The IVI Foundation recommends that driver suppliers build a 32-bit driver that works on both 32-bit and 64-

bit operating systems and a 64-bit driver that works on 64-bit operating systems. The IVI Foundation

recommends that driver suppliers distribute these drivers using the following installer bitness types:

¶ Singular 32-bit driver installer (32-bit OS)

¶ Unified 32-bit/64-bit driver installer (64-bit OS)

Note: The Singular 32-bit driver installer and Unified 32-bit/64-bit driver installer may be bundled into a

single .exe installer that can run on both a 32-bit OS and a 64-bit OS.

Prior to version 2.0 of this specification, IVI-COM and IVI-C drivers were only 32-bit and shipped with

installers packaged as singular 32-bit driver installers (32-bit OS/64-bit OS). Driver suppliers may continue

to distribute singular 32-bit driver installers (32-bit OS/64-bit OS), but only if they do not also distribute 64-

bit versions of the same drivers.

Changing an existing driver that ships with a singular 32-bit driver installer (32-bit OS/64-bit OS) to the

recommended approach requires modifying the build process for the driver and the driver installer. Driver

suppliers changing to the recommended approach should pay particular attention to the following:

¶ The 32-bit driver installer must be modified to refuse to install on 64-bit operating systems.

¶ The 64-bit import libraries for IVI-C drivers must be added to the 32-bit driver installer.

¶ The 32-bit and 64-bit driver DLLs must have the same MajorVersion, MinorVersion, and BuildVersion.

¶ The DLL FileVersion must be updated with at least an incremented BuildVersion as compared to the

version before adding the 64-bit driver.

Note: 64-bit IVI-C installers must also set the ModulePath64 property in the IVI configuration store.

2.3.2 IVI.NET Driver Installation

An IVI.NET driver installation program installs the driver files to standard directories, creates Windows

registry entries for the IVI.NET driver, registers the driver with the IVI configuration store, and registers an

uninstaller for the driver. The IVI.NET driver is immediately usable after installation. Multiple versions of

an installed IVI.NET driver can coexist on the same machine. The IVI Foundation strongly recommends that

IVI.NET driver installers install side-by-side with other versions of the same driver, that is, without

uninstalling the other versions of the driver on the system.

2.3.2.1 IVI.NET Driver Installers and Bitness

IVI.NET driver installers may install 32-bit drivers, 64-bit drivers, or both. IVI.NET driver installers may

run on 32-bit operating systems, 64-bit operating systems, or both.

2.3.2.1.1 Valid Uses of Driver Installer Bitness Types for IVI.NET Driver Installers

This section specifies the IVI driver installer bitness types that are valid for IVI.NET driver installers, based

on the operating systems a driver supplier supports and the bitness of the IVI.NET drivers the supplier

provides. For the definition of the types, refer to Section 1.3.3, Definition of IVI Driver Installer Bitness

Types.

IVI Foundation 20 IVI-3.17: Installation Requirements Specification

Table 2-4. Valid installer bitness types when only a 32-bit driver is available

Supported Operating Systems Valid Combinations of Driver Installation Program Types

Only 32-bit operating systems Singular 32-bit driver installer (32-bit OS)

Only 64-bit operating systems Singular 32-bit driver installer (64-bit OS)

Both 32-bit and 64-bit operating systems Option A:

Singular 32-bit driver installer (32-bit OS)

AND

Singular 32-bit driver installer (64-bit OS)

Note: This option is recommended for drivers that call the IVI.NET

shared component installer or are transitioning to 64-bit driver

support.

Option B:

Singular 32-bit driver installer (32-bit OS/64-bit OS)

Note: This option is recommended for drivers that do not call the

IVI.NET shared component installer. If the installer calls the

IVI.NET shared component installer, then this option requires calling

both the 32-bit and 64-bit IVI.NET shared component installers.

Table 2-5. Valid installer bitness types when only a 64-bit driver is available

Supported Operating Systems Valid Combinations of Driver Installation Program Types

Only 64-bit operating systems Singular 64-bit driver installer

Table 2-6. Valid installer bitness types when both a 32-bit and a 64-bit driver are available

Supported Operating Systems Valid Combinations of Driver Installation Program Types

32-bit driver is supported on both 32-bit

and 64-bit operating systems

64-bit driver is supported on 64-bit

operating systems

Singular 32-bit driver installer (32-bit OS)

AND

Unified 32-bit/64-bit driver installer (64-bit OS)

Note: This option ensures that the driver full version for both the 32-

bit version and 64-bit version of the driver on a 64-bit operating

system are the same.

32-bit driver is supported only on 32-bit

operating systems

64-bit driver is supported on 64-bit

operating systems

Note: This excludes installation of a 32-

bit driver on a 64-bit operating system

Singular 32-bit driver installer (32-bit OS)

AND

Singular 64-bit driver installer (64-bit OS)

Note: The Singular 32-bit driver installer (32-bit OS) shall refuse to

install on 64-bit operating systems.

IVI-3.17: Installation Requirements Specification 21 IVI Foundation

32 bit driver is supported only on 64-bit

operating systems

64-bit driver is supported on 64-bit

operating systems

Unified 32-bit/64-bit driver installer (64-bit OS)

Note: This ensures that the driver full version for both the 32-bit

version and 64-bit version of the driver on a 64-bit operating system

are the same.

2.3.2.1.2 Recommended IVI.NET Driver Installer Approach

The IVI Foundation recommends that driver suppliers build a 32-bit driver that works on both 32-bit and 64-

bit operating systems and a 64-bit driver that works on 64-bit operating systems. The IVI Foundation

recommends that driver suppliers distribute these drivers using the following installer bitness types:

¶ Singular 32-bit driver installer (32-bit OS)

¶ Unified 32-bit/64-bit driver installer (64-bit OS)

Note: The Singular 32-bit driver installer and Unified 32-bit/64-bit driver installer may be bundled into a

single .exe installer that can run on both a 32-bit OS and a 64-bit OS.

2.3.2.1.3 IVI.NET Driver Installers and .NET Framework Versions

An IVI.NET driver supplier might want to take advantage of features in a .NET Framework version that are

not available in prior .NET Framework versions that the driver supports. To do this, the driver supplier

creates two different framework-dependent variants of the driver. In such a case, each variant shall be

installed in the .NET Framework Version directory for the minimum major.minor .NET Framework version

that the variant requires. A single IVI.NET driver installer shall install exactly one framework-dependent

variant.

2.3.2.1.4 IVI.NET Driver Installers and Design-Time Support

The default behavior of an IVI.NET driver installer shall be to install all design-time and run-time

components. An IVI.NET driver installer may support conditional installation of some or all design-time

components.

2.4 IVI Shared Component Installation

2.4.1 IVI-COM/IVI-C Shared Component Installation

The IVI Foundation provides three IVI-COM/IVI-C shared components installation programs:

¶ 64-bit IVI-COM/IVI-C shared component installer, which installs both 32-bit and 64-bit IVI-COM/IVI-C

shared components on 64-bit operating systems. The 64-bit installer refuses to install on 32-bit operating

systems.

¶ 32-bit IVI-COM/IVI-C shared component installer, which installs 32-bit IVI-COM/IVI-C shared

components on 32-bit operating systems. The 32-bit installer refuses to install on 64-bit operating

systems.

Note: The IVI Foundation wants to ensure that, if the 32-bit and 64-bit versions of the shared

components are on the same machine, they share the same revision. Allowing the 32-bit IVI-

COM/IVI-C shared component installer to run on a 64-bit system might cause a 32-bit version of the

shared components to be updated without updating the 64-bit version.

¶ Legacy IVI-COM/IVI-C shared component installer, which installs 32-bit IVI-COM/IVI-C shared

IVI Foundation 22 IVI-3.17: Installation Requirements Specification

components on both 32-bit and 64-bit operating systems. The legacy IVI-COM/IVI-C shared component

installer has a version of 1.5.1 or less. The IVI Foundation will distribute version 1.5.1 of the legacy IVI-

COM/IVI-C shared component installer, which complied with version 1.7 of this specification, until the

IVI Foundation determines that no IVI-COM/IVI-C driver installers require the legacy shared component

installer. No maintenance updates will be made to the legacy IVI-COM/IVI-C shared component

installer.

Note: The purpose of distributing the legacy installer is to allow suppliers to continue to distribute singular

32-bit driver installers (32-bit/64-bit OS) that call the IVI-COM/IVI-C shared component installer. If one of

the two first two installers listed above has ever been run successfully, the legacy installer will do nothing.

Each IVI-COM/IVI-C shared component installer program installs the following IVI-COM/IVI-C shared

components:

¶ IVI Configuration Server

¶ IVI Floating Point Services

¶ IVI C Shared Components

¶ IVI COM Session Factory

¶ IVI Type Libraries

¶ IVI Primary Interop Assemblies

¶ IviLxiSync Components

The latest IVI-COM/IVI-C shared component installation programs are also available for public download

from the IVI Foundation web site, www.ivifoundation.org, and are not distributed as an IVI-COM/IVI-C

shared component.

IVI-COM and IVI-C drivers cannot be installed until the user has successfully installed the IVI-COM/IVI-C

shared components for the appropriate operating system. IVI-COM/IVI-C driver installers have the ability to

detect the presence of the shared components and to verify that they are of a version sufficient for the driver.

If the shared components are not detected or are not of a sufficient version, the IVI-COM/IVI-C driver

installer may call into the IVI-COM/IVI-C shared component installer program, thus providing a seamless

install experience for the end user. Alternatively, the IVI-COM/IVI-C driver installer may require the user to

run the IVI-COM/IVI-C shared component installer as a separate step before installing the driver. In that

case, either the driver supplier distributes the IVI-COM/IVI-C shared component installer with the IVI-

COM/IVI-C driver installer, or the IVI-COM/IVI-C driver installer directs the user to the IVI Foundation web

site.

The IVI-COM/IVI-C shared component installation program checks for the presence of the shared

components on the system. If the shared components are already present, the installer does not install files

unless the shared components it contains have a version that is greater than or equal to the version of the

shared components on the system.

To remove the IVI-COM/IVI-C shared components from a system, the user either uses the standard Windows

Control Panel facility to add and remove programs or runs the IVI-COM/IVI-C shared component cleanup

utility that the IVI Foundation provides. The IVI-COM/IVI-C shared component cleanup utility is available

for public download from the IVI Foundation web site.

The IVI Foundation does not support or recommend the maintenance of multiple versions of the IVI-

COM/IVI-C shared components on a system.

IVI-3.17: Installation Requirements Specification 23 IVI Foundation

2.4.2 IVI.NET Shared Component Installation

The IVI Foundation might want to take advantage of features in a .NET Framework version that are not

available in prior .NET Framework versions that the IVI.NET shared components support. In this case, the

IVI Foundation creates two framework-dependent variants of the same version of the IVI.NET shared

components. Each variant shall be installed in the .NET Framework Version directory for the minimum

major.minor .NET Framework version that the variant requires.

A single IVI.NET shared component installer shall install exactly one framework-dependent variant. For

each framework-dependent variant of each version of the IVI.NET shared components, the IVI Foundation

provides two installation programs. The two installation programs are:

¶ 64-bit IVI.NET shared component installer, which installs both 32-bit and 64-bit IVI.NET shared

components on 64-bit operating systems. The 64-bit installer refuses to install on 32-bit operating

systems.

¶ 32-bit IVI.NET shared component installer, which installs 32-bit IVI.NET shared components on 32-bit

operating systems. The 32-bit installer refuses to install on 64-bit operating systems.

Note: The IVI Foundation wants to ensure that, if the 32-bit and 64-bit versions of the .NET shared

components are on the same machine, they share the same patch level. Allowing the 32-bit IVI.NET shared

component installer to run on a 64-bit system might cause a 32-bit version of the .NET shared components to

be updated without updating the 64-bit version.

Each IVI.NET shared component installer program installs the following IVI.NET shared components:

¶ IVI.NET Standard Inherent and Class Assemblies

¶ IVI.NET Standard Inherent and Class Assembly IntelliSense Files

All IVI.NET shared component assemblies shall be signed with the IVI Foundation public/private key pair, to

allow installation to the GAC.

The latest IVI.NET shared component installation program s are available for public download from the IVI

Foundation web site, www.ivifoundation.org and is distributed separately from the IVI-COM/IVI-C shared

component installation program.

The IVI Foundation supports side-by-side installations of multiple framework-dependent variants of multiple

versions of the IVI.NET shared components on a system. Each IVI.NET shared component installation

program checks for the presence on the system of the version and framework- dependent variant that it

installs. The IVI.NET shared components installation program does not install files if the version and

framework-dependent variant that it installs is already present on the system.

The IVI.NET shared components cannot be installed until the user has successfully installed the version of

the .NET Framework that the shared components require. If the required version of the .NET Framework is

not detected, the IVI.NET shared component installer exits and directs the user to run the .NET Framework

installer.

The IVI.NET shared components cannot be installed until the user has successfully installed the IVI-

COM/IVI-C shared components. The IVI.NET shared component installer attempts to detect the presence of

the IVI-COM/IVI-C shared components and verify that they are of a version sufficient for the IVI.NET

shared component installer. If the IVI-COM/IVI-C shared components are not detected or are not of a

sufficient version, the IVI.NET shared component installer exits and directs the user to the IVI Foundation

web site.

IVI.NET drivers cannot be installed until the user has successfully installed the IVI.NET shared components.

IVI.NET driver installers have the ability to detect the presence of the IVI.NET shared components and to

verify that they are of a version sufficient for the driver. If the IVI.NET shared components are not detected

or are not of a sufficient version, the IVI.NET driver installer may call into the IVI.NET shared component

installer program, thus providing a seamless install experience for the end user. Alternatively, the IVI.NET

IVI Foundation 24 IVI-3.17: Installation Requirements Specification

driver installer may require the user to run the IVI.NET shared component installer as a separate step before

installing the driver. In that case, either the driver supplier distributes the IVI.NET shared component

installer with the IVI.NET driver installer, or the IVI.NET driver installer directs the user to the IVI

Foundation web site.

To remove the IVI.NET shared components from a system, the user uses the standard Windows Control

Panel facility for adding and removing programs.

2.5 IVI Directory Structure

This section describes the directory structures defined by the IVI Foundation.

32-bit Windows operating systems have a single Program Files directory. 64-bit Windows operating systems

have two Program Files directories, one for 64-bit applications and one for 32-bit applications. On 32-bit

operating systems the IVI standard root directory exists under the single 32-bit Program Files directory. On

64-bit operating systems the IVI standard root directory exists under both the 32-bit Program Files directory

and the 64-bit Program Files directory, for 32-bit and 64-bit applications respectively. The following

directory structure diagrams show the IVI standard root directory on 32-bit and 64-bit operating systems.

Windows 7 (32-bit) , Windows 8 (32-bit), and Windows 10 (32-bit)

Windows 7 (64-bit), Windows 8 (64-bit), and Windows 10 (64-bit)

Notice that the 32-bit IVI Standard Root Directory path on Windows 7 (64-bit), Windows 8 (64-bit), and

Windows 10 (64-bit) is different than it is on Windows 7 (32-bit), Windows 8 (32-bit), and Windows 10 (32-

bit). This is because on the 32-bit operating systems the 32-bit Windows Program Files directory name is

“Program Files”, whereas on 64-bit Windows it is “Program Files (x86)”.

2.5.1 IVI-COM/IVI-C Directory Structure

Refer to Appendix A: Example: IVI-COM/IVI-C Driver Installer Scenarios for an example system on which

the user has installed multiple drivers from different vendors.

32-bit Directory
Structure

C:\Program Files\
IVI Foundation\

IVI\ (IVI Standard Root Directory)

32-bit Directory
Structure

C:\Program Files (x86)\
IVI Foundation\

IVI\ (IVI Standard Root Directory)

64-bit Directory
Structure

C:\Program Files\
IVI Foundation\

IVI\ (IVI Standard Root Directory)

IVI-3.17: Installation Requirements Specification 25 IVI Foundation

2.5.1.1 IVI-COM/IVI-C Directory Structure Diagrams

The following diagrams denote the directories that the IVI Foundation specifies. The directories shown in

italics are placeholders for names that vendors or users supply.

32-bit IVI Standard Root Directory

Vendor1 Name

Bin

Drive rs

VendorN Name

Components

Driver1 Prefix

Driver2 Component Identifier

DriverN Prefix

Include

Lib

bc

msc

Lib_x64

bc

msc

64-bit IVI Standard Root Directory

Vendor1 Name

Bin

Drive rs

VendorN Name

Components

Driver1 Prefix

Driver2 Component Identifier

DriverN Prefix

Include

Lib_x64

bc

msc

Prima ry Inte rop Assem blies Prima ry Inte rop Assem blies

IVI Foundation 26 IVI-3.17: Installation Requirements Specification

2.5.1.2 IVI-COM/IVI-C Standard Directory Tree

This section describes the IVI-COM/IVI-C standard directory tree. Driver installations place all files in the

IVI standard directory tree, except for files that must be in directories specific to ADEs. The IVI-COM/IVI-C

shared components are also installed in the IVI standard directory tree. The root directory of the tree is called

the IVI standard root directory.

2.5.1.3 Creation of the IVI-COM/IVI-C Standard Directory Tree

The IVI-COM/IVI-C shared component installer has the ability to detect whether the IVI-COM/IVI-C

standard root directory has already been defined in the registry. If it has not been defined, the installer

prompts the user for the directory path, creates the IVI standard root directory, creates a registry entry for IVI

standard root directory, and creates the standard subdirectories of the IVI standard root directory. The IVI-

COM/IVI-C shared component installer, when called from another installer, has the ability to accept the

standard root directory path as a command line parameter.

IVI-COM/IVI-C driver installers have the ability to detect whether the IVI standard root directory has already

been defined in the registry. If an IVI-COM/IVI-C driver installer detects that the IVI standard root directory

has not yet been defined, what it does depends on whether it calls the IVI-COM/IVI-C shared component

installer. If it does not call the IVI-COM/IVI-C shared component installer, the IVI-COM/IVI-C driver

installer exits and instructs the user to run the IVI shared component installer. If it does call the IVI-

COM/IVI-C shared component installer, the IVI-COM/IVI-C driver installer prompts the user to specify a

directory path and then passes the directory path to the IVI-COM/IVI-C shared component installer.

2.5.1.4 Contents of the IVI-COM/IVI-C Standard Directory Tree

The root directory of the IVI standard directory tree is intended to contain only subdirectories. IVI-

COM/IVI-C installers do not install files directly into the root directory. This section describes the

subdirectories in alphabetic order. Note that the Bin, Include, Lib, and Lib_x64 subdirectories comprise

the standard common files directories.

Bin Subdirectory

The Bin subdirectory contains all IVI-COM and IVI-C driver DLLs, all IVI-COM/IVI-C shared component

DLLs, and all vendor specific shared component DLLs. The Bin subdirectory contains the Primary

Interop Assemblies subdirectory.

All IVI-COM and IVI-C driver DLLs, except .NET Primary Interop Assemblies (PIAs), are installed in the

Bin subdirectory. PIAs and their corresponding XML IntelliSense help files are installed in the

Bin\Primary Interop Assemblies subdirectory. The IVI-COM/IVI-C shared component installer

creates the Bin and Bin\Primary Interop Assembly subdirectories.

IVI Data Directory

IviConfigurationStore.xml

IviConfigurationStore.xsd

IVI-3.17: Installation Requirements Specification 27 IVI Foundation

Components Subdirectory

The Components subdirectory contains the non-dispersed IVI-COM/IVI-C shared component files and the

non-dispersed vendor specific shared component files. The IVI-COM/IVI-C shared component files are at

the top level of the Components directory. The vendor specific component files are in vendor specific

subdirectories of the Components directory.

The IVI-COM/IVI-C shared component installer creates the Components subdirectory.

Refer to Section 5.1.6, Installation of Vendor Specific Shared Components, for information on installation of

vendor specific shared components.

Drivers Subdirectory

The Drivers subdirectory contains the standard driver specific subdirectories. The standard driver specific

subdirectories contain the non-dispersed driver files. The name of each standard driver specific subdirectory

is the driver prefix or component identifier.

The IVI-COM/IVI-C shared component installer creates the Drivers subdirectory.

For IVI-COM and IVI-C drivers, the driver installer creates the driver specific subdirectory for the driver.

Include Subdirectory

The Include subdirectory contains all header files, and the GUID definition files (_i.c).

The IVI-COM/IVI-C shared component installer creates the Include subdirectory.

Lib Subdirectory

The Lib subdirectory contains two subdirectories bc, and msc. The bc subdirectory contains all Borland-

compatible 32-bit DLL import library files. The msc subdirectory contains all Microsoft-compatible 32-bit

DLL import library files. The IVI-COM/IVI-C shared component installer creates the Lib, Lib\bc, and

Lib\msc subdirectories.

Lib_x64 Subdirectory

The Lib_x64 subdirectory contains two subdirectories bc, and msc. The bc subdirectory contains all

Borland-compatible 64-bit DLL import library files. The msc subdirectory contains all Microsoft-compatible

64-bit DLL import library files.

The IVI-COM/IVI-C shared component installer creates the Lib_x64, Lib_x64\bc, and Lib_x64\msc

subdirectories.

2.5.1.5 Recommendations for Users

This section contains recommendations for users of IVI-COM/IVI-C installers. Driver suppliers should

include these recommendations in help documentation for IVI-COM or IVI-C drivers.

¶ When installing an IVI-COM or IVI-C driver on top of a different version of the driver, uninstall the

previous driver before installing the new driver.

¶ If you no longer need an IVI-COM or IVI-C driver, run the driver uninstaller.

IVI Foundation 28 IVI-3.17: Installation Requirements Specification

¶ If you do not need IVI-COM/IVI-C shared components, use the standard Windows Control Panel facility

for adding and removing programs to remove the IVI-COM/IVI-C shared components.

¶ If you are creating an installer that calls an IVI-COM/IVI-C installer, refer to Section 7, Installer

Interface Requirements, for details on command line syntax that IVI installers use.

¶ If you install the Microsoft .NET Framework after installing the IVI-COM/IVI-C Shared Components

and you intend to call an IVI-COM driver from a .NET language, run the batch file IviPiaRegistration.bat

in the <IVIStandardRootDir>\Bin\Primary Interop Assemblies directory. On Windows 7

(64-bit), Windows 8 (64-bit), and Windows 10 (64-bit) run this file in both the 32-bit and 64-bit

directories.

2.5.2 IVI.NET Directory Structure

This section describes the .NET specific directory structures defined by the IVI Foundation.

Refer to Appendix B: Example: IVI.NET Driver Installer Scenarios for an example system on which the user

has installed multiple drivers from different vendors.

For 32-bit Windows operating systems, the IVI Foundation defines a single IVI.NET standard root directory.

For 64-bit Windows operating systems, the IVI Foundation defines two IVI.NET standard root directories,

one for 64-bit applications and one for 32-bit applications. On 32-bit operating systems the IVI.NET

standard root directory exists under the single 32-bit IVI standard root directory. On 64-bit operating systems

the IVI.NET standard root directory exists under both the 32-bit IVI standard root directory and the 64-bit IVI

standard root directory, for 32-bit and 64-bit components respectively. For cases where assemblies are

compiled as “Any CPU” and are intended to function both as 32-bit and 64-bit components, the assemblies

shall be installed in both the 32-bit and 64-bit IVI standard root directories. The following directory structure

diagrams show the IVI.NET standard root directory on 32-bit and 64-bit operating systems.

Windows 7 (32-bit) , Windows 8 (32-bit), and Windows 10 (32-bit)

Windows 7 (64-bit), Windows 8 (64-bit), and Windows 10 (64-bit)

32-bit Directory
Structure

<IVIStandardRootDir32>\Microsoft.NET

32-bit Directory
Structure

<IVIStandardRootDir32>\Microsoft.NET

64-bit Directory
Structure

<IVIStandardRootDir64>\Microsoft.NET

IVI-3.17: Installation Requirements Specification 29 IVI Foundation

2.5.2.1 IVI.NET Directory Structure Diagrams

The following diagrams denote the directories that the IVI Foundation specifies. The directories shown in

italics are placeholders.

Component
Version- Specific

Directory

Framework Version
Directory

Framework
Platform Directory

IVI.NET Standard
Root Directory

32-bit IVI Standard
Root Directory

<IVIStandardRootDir32>

Microsoft.NET

Framework32

<FrameworkVersionDir>

<DriverNamespace>
<FullVersion>

Component
Version-Specific

Directory

Framework Version
Directory

Framework
Platform Directory

IVI.NET Standard
Root Directory

64-bit IVI Standard
Root Directory

<IVIStandardRootDir64>

Microsoft.NET

Framework64

<FrameworkVersionDir>

<DriverNamespace>
<FullVersion>

IVI Foundation 30 IVI-3.17: Installation Requirements Specification

2.5.2.2 IVI.NET Standard Directory Tree

This section describes the IVI.NET standard directory tree. IVI.NET driver and shared component

installations place all files in the IVI.NET standard directory tree except for the following files:

¶ Files that must be in directories specific to ADEs

¶ Assemblies and policy files that must be in the GAC

The root directory of the tree is called the IVI.NET standard root directory.

2.5.2.3 Creation of the IVI.NET Standard Directory Tree

The IVI.NET shared component installer detects whether the IVI.NET standard root directory has already

been defined in the registry. If it has not been defined in the registry, the installer creates the IVI.NET

standard root directory, creates a registry entry for IVI.NET standard root directory, and creates the standard

directories of the IVI.NET standard root directory.

IVI.NET driver installers detect whether the IVI.NET standard root directory has already been defined in the

registry. If an IVI.NET driver installer detects that the IVI.NET standard root directory has not yet been

defined, what it does depends on whether it calls the IVI.NET shared component installer. If it does not call

the IVI.NET shared component installer, the IVI.NET driver install exits and instructs the user to run the

IVI.NET shared component installer. If it does call the IVI.NET shared component installer, the IVI.NET

shared component installer creates the IVI.NET standard directory tree and defines the IVI.NET standard root

directory in the registry.

2.5.2.4 Contents of the IVI.NET Standard Directory Tree

The root directory of the IVI.NET standard directory tree is intended to contain only subdirectories. IVI.NET

installers do not install files directly into the root directory. This section describes the subdirectories in

alphabetic order.

Framework32 and Framework64 Directories

The Framework32 directory tree contains the design-time support that IVI.NET drivers and shared

components provide for 32-bit applications. The Framework64 directory tree contains the design-time

support that IVI.NET drivers and shared components provide for 64-bit applications. Components marked as

“Any CPU” may be installed to both the Framework32 and Framework64 subdirectories to support use in

both 32-bit and 64-bit applications.

IVI.NET installers do not install files directly into the Framework32 and Framework64 directories. Instead,

the files are installed into the <FrameworkVersionDir> subdirectories.

The IVI.NET shared component installer creates the Framework32 and Framework64 subdirectories.

<FrameworkVersionDir> Subdirectories

The <FrameworkVersionDir> subdirectories reside under the Framework32 and Framework64

subdirectories. These subdirectories correspond to released versions of the .NET Framework. Installers

install to the particular <FrameworkVersionDir> subdirectory tree that corresponds to the minimum

major.minor version of the .NET Framework that the installed components require. Each directory name

exactly matches the corresponding .NET Framework directory name under

%Windows%\Microsoft.NET\Framework[64].

The <FrameworkVersionDir> subdirectories contain the following subdirectories:

IVI-3.17: Installation Requirements Specification 31 IVI Foundation

¶ IVI.NET Shared Component Version-Specific subdirectories

¶ IVI.NET Driver Version-Specific subdirectories

The IVI.NET shared component installer creates the <FrameworkVersionDir> subdirectories. Refer to

Section 4.2.1, IVI.NET Shared Component Installer Responsibilities, for additional information on the

<FrameworkVersionDir> subdirectories that the shared component installer creates.

IVI.NET Component Version-Specific Subdirectories

The IVI.NET component version-specific subdirectories contain the files for the design-time support that

IVI.NET drivers and shared components provide.

Each IVI.NET component version-specific subdirectory also contains a version identification file that

installers use to determine the presence, vendor, and patch level of an installed IVI.NET driver.

If an IVI.NET driver installer installs unmanaged components, the installer may install such components in

any location. The IVI Foundation recommends the following directories:

¶ WinSxS

¶ IVI.NET Component Version-Specific subdirectory

2.5.2.5 Recommendations for Users

This section contains recommendations for users of IVI.NET installers. Driver suppliers should include these

recommendations in help documentation for IVI.NET drivers.

¶ IVI.NET driver version numbers are in Major.Minor.Build format.

¶ IVI.NET driver versions install side-by-side with other versions that have different Major, Minor, or

Build numbers. When installing an IVI.NET driver, it is not necessary for you to uninstall versions that

have different Major, Minor, or Build numbers.

¶ If you no longer need the IVI.NET shared components, use the standard Windows Control Panel facility

for adding and removing programs to remove the IVI.NET shared components.

¶ If you are creating an installer that calls an IVI.NET installer, refer to Section 7, Installer Interface

Requirements, for details on the command line syntax that IVI.NET installers use.

2.6 Wrapper Packaging in IVI Driver Installers

A C wrapper for an IVI-COM driver may be packaged in the same installer or in a different installer.

A COM wrapper for an IVI-C driver may be packaged in the same installer or in a different installer.

A .NET wrapper for an IVI-COM or IVI-C driver shall be packaged in a separate installer.

A COM or C wrapper for an IVI.NET driver shall be packaged in a separate installer.

Note: In this context, “separate installer” means an installer binary that can be run standalone, even though it

might also be aggregated with other installers into a single installation program.

IVI Foundation 32 IVI-3.17: Installation Requirements Specification

3. Requirements for General Behavior of IVI Installers

3.1 Silent and Dialog Installation Modes

IVI driver installers and the IVI shared component installer shall support both dialog mode installation and

silent mode installation, with the default being dialog installation mode.

During dialog mode installations, IVI installers shall provide status information interactively. If an error

occurs, an installer running in dialog mode displays an error message to the user and may allow the user to

make a subsequent choice in an attempt to correct the source of the problem.

3.2 Handling Failures

An IVI installer shall check for all failure conditions that Sections 4, 5, and 6 specifically identify. In

addition to these failure conditions, the IVI installer shall check for and report other common installation

errors, such as file transfer or access errors, failure to create directories, failure to create registry entries, and

failure to modify the Windows search path.

If the IVI installer is run in silent mode and an failure condition occurs, the installer shall reverse the

incomplete installation and exit.

If the installer is run in dialog mode and an failure condition occurs, the installer shall take one of the

following actions:

¶ Reverse the incomplete installation, display an informative message to the user, and exit.

¶ Prompt the user for help in recovering from the failure condition.

Refer to Section 3.4, Reversing Incomplete Installations, for details on how IVI installers reverse incomplete

installations.

3.3 Handling User Termination of Installer

If the user cancels out of an IVI installer, the IVI installer reverses the incomplete installation and exits. Refer

to Section 3.4, Reversing Incomplete Installations, for details on how IVI installers reverse incomplete

installations.

3.4 Reversing Incomplete Installations

If an IVI installer aborts or fails during installation, the IVI installer shall remove all traces of the partially

installed software, including Windows registry entries, IVI configuration store entries, files, and directories.

If the software previously existed on the system, the IVI installer shall restore the user’s system to its

previous state.

If an IVI driver installer calls the IVI shared component installer and a failure occurs after the IVI shared

component installer returns, the IVI driver installer shall not reverse the IVI shared component installation.

If an IVI installer calls installers for vendor-defined or third-party components and a failure occurs after

installing the components, the reversal process may attempt to remove the components or restore them to

their previous state.

Note: If the IVI installer terminates abnormally, such as from a General Protection Fault or other fatal failure

condition, the IVI installer might not be able to reverse the incomplete installation.

IVI-3.17: Installation Requirements Specification 33 IVI Foundation

3.5 Installer Logging

An IVI installer shall give the user or calling program an option for generating an ASCII log file that

describes the actions of the installer that changed the state of the user’s machine.

IVI Foundation 34 IVI-3.17: Installation Requirements Specification

4. IVI Directory Structure Creation and Detection Requirements

This section specifies the IVI installer requirements for creating and detecting elements of the IVI directory

structure. The responsibilities of the IVI shared component installer and IVI driver installers are discussed

separately.

4.1 IVI Standard Root Directory and IVI Data Directory

This section describes the requirements for creating and detecting elements of the IVI standard root directory

tree and the IVI data directory.

4.1.1 IVI-COM/IVI-C Shared Component Installer Responsibilities

This section specifies the IVI-COM/IVI-C shared component installer requirements for discovering,

registering and creating the IVI standard root directory. The requirements are separated into two parts:

¶ Responsibilities required by both 32-bit and 64-bit installers

¶ Additional responsibilities required by the 64-bit installer

4.1.1.1 32-bit and 64-bit IVI-COM/IVI-C Shared Component Installer Responsibilities

The IVI-COM/IVI-C shared component installers, both 32-bit and 64-bit, shall discover, register, and create

the 32-bit IVI standard root directory tree according to the following rules. In these rules, <HKLM\SW> varies

by Operating System and component bitness. Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in

the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for details.

1. The installer checks the Windows registry for a non-empty value of the following registry key in the 32-

bit registry hive:

<HKLM\SW>\IVI, IviStandardRootDir

2. If IviStandardRootDir is already registered, the installer uses the registered root directory for 32-bit

shared component installations. If the installer is invoked from the command line with a non-empty 32-

bit IVI standard root directory path, the installer ignores the specified path.

a. The installer checks the Windows registry for a non-empty value of the following registry key:

<HKLM\SW>\IVI, IviDataDir

b. If IviDataDir is not already registered, the installer registers the IVI data directory in the

Windows registry as:

<HKLM\SW>\IVI, IviDataDir

The installer sets the IviDataDir value to be <IviStandardRootDir32>\Data and then

creates the IVI data directory.

Note: Step 2-b accounts for upgrades of older installations after the user has performed a partial

cleanup. In this case, the 32-bit IVI standard root directory was previously defined but not

<IviDataDir>.

3. If IviStandardRootDir is not already registered, the installer takes the following actions.

a. If the installer is invoked in dialog mode, the installer suggests the following 32-bit IVI standard

directory path to the user:

<ProgramFilesDir32>\IVI Foundation\IVI

IVI-3.17: Installation Requirements Specification 35 IVI Foundation

The installer allows the user to change the suggested path to another valid path.

Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the

system, in the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <ProgramFilesDir32>.

b. A failure condition exists if the installer is invoked in silent mode with an empty or invalid path for

the 32-bit IVI standard root directory.

c. A failure condition exists if the path that the user or calling program specifies for the 32-bit IVI

standard root directory is one of the following directories or its subdirectories:

¶ The 32-bit and 64-bit VXIplug&play directories. Refer to VXIplug&play specification

VPP-6: Installation and Packaging Specification, for details on the VXIplug&play

directories.

¶ Windows 7 (64-bit), Windows 8 (64-bit), and Windows 10 (64-bit). The 64-bit IVI

standard root directory.

¶ Windows 7 (64-bit), Windows 8 (64-bit), and Windows 10 (64-bit). The

<ProgramFilesDir> directory.

d. The installer registers the 32-bit IVI standard directory path in the Windows registry as:

<HKLM\SW>\IVI, IviStandardRootDir

e. The installer registers the IVI data directory in the Windows registry as:

<HKLM\SW>\IVI, IviDataDir

The IviDataDir path is <ProgramDataDir>\IVI Foundation\IVI.

Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the

system, in the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <ProgramDataDir>.

f. The installer checks the Windows registry for a non-empty value of the following registry key:

<HKLM\SW>\IVI\CONFIGURATIONSERVER, MasterStore

g. If MasterStore is not already registered, the installer registers the master configuration store path

in the Windows registry as:

<IviDataDir>\IviConfigurationStore.xml

h. The installer adds <IVIStandardRootDir32>\Bin to the Windows system search path.

i. The installer creates a Windows environment variable named IVIROOTDIR32 and sets the value to

be the <IVIStandardRootDir32> path.

j. The installer creates the 32-bit IVI standard root directory and the following standard subdirectories:

Bin, Bin\Primary Interop Assemblies, Components, Drivers, Include, Lib, Lib\bc,

\Lib\msc, Lib_x64, Lib_x64\bc, and \Lib_x64\msc.

k. The installer creates the IVI data directory.

l. If the installer is successful in creating the directories, the installer proceeds.

If the 32-bit IVI standard root directory is defined but the directory or any of the subdirectories do not exist,

the IVI shared component installer shall create the missing directories.

IVI Foundation 36 IVI-3.17: Installation Requirements Specification

4.1.1.2 Additional 64-bit IVI-COM/IVI-C Shared Component Installer Responsibilities

The 64-bit IVI-COM/IVI-C shared component installer shall discover, register, and create the 64-bit IVI

standard root directory tree according to the following rules. In these rules, <HKLM\SW> varies by Operating

System and component bitness. Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in

the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for details.

1. The installer checks the Windows registry for a non-empty value of the following registry key:

<HKLM\SW>\IVI, IviStandardRootDir

2. If IviStandardRootDir is already registered, the installer uses the registered root directory value for 64-bit

shared component installations. If the installer is invoked from the command line with a non-empty 64-

bit IVI standard root directory path, the installer ignores the specified path.

3. If IviStandardRootDir is not already registered, the installer takes the following actions.

a. If the installer is invoked in dialog mode, the installer suggests the following 64-bit IVI standard

directory path to the user:

<ProgramFilesDir>\IVI Foundation\IVI

The installer allows the user to change the suggested path to another valid path.

Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the

system, in the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <ProgramFilesDir>.

b. A failure condition exists if the installer is invoked in silent mode with an empty or invalid path

for the 64-bit IVI standard root directory.

c. A failure condition exists if the path that the user or calling program specifies for the 64-bit IVI

standard root directory is one of the following directories or its subdirectories:

¶ The 32-bit and 64-bit VXIplug&play directories. Refer to VXIplug&play specification

VPP-6: Installation and Packaging Specification, for details on the VXIplug&play

directories.

¶ The 32-bit IVI standard root directory.

¶ The <ProgramFilesDir32> directory.

d. The installer registers the 64-bit IVI standard directory path in the Windows registry as:

<HKLM\SW>\IVI, IviStandardRootDir

e. The installer registers the IVI data directory in the Windows registry as:

<HKLM\SW>\IVI, IviDataDir

The installer sets the IviDataDir path to the same value as determined in steps 2-a and 2-b of

Section 4.1.1.1, 32-bit and 64-bit IVI-COM/IVI-C Shared Component Installer Responsibilities.

Note: On 64-bit operating systems, there are two registry keys for IviDataDir (one for 32-bit

applications and one for 64-bit applications) whereas there is just one IVI data directory path.

Both registry keys shall be set to the same value so that applications of different bitness can

easily retrieve the same IVI data directory path.

f. The installer checks the Windows registry for a non-empty value of the following registry key:

<HKLM\SW>\IVI\CONFIGURATIONSERVER, MasterStore

g. If MasterStore is not already registered, the MasterStore path is set to the value determined

in steps 4-e and 4-f of Section 4.1.1.1, 32-bit and 64-bit IVI-COM/IVI-C Shared Component

Installer Responsibilities.

IVI-3.17: Installation Requirements Specification 37 IVI Foundation

Note: On 64-bit operating systems, there are two registry keys for MasterStore (one for 32-

bit applications and one for 64-bit applications) whereas there is just one master configuration

store path. It is important that both registry keys be set to the same value so that applications of

different bitness can easily retrieve the same IVI master configuration store path.

h. The installer adds <IVIStandardRootDir64>\Bin to the Windows system search path.

i. The installer creates a Windows environment variable named IVIROOTDIR64 and sets the

value to be the <IVIStandardRootDir64> path.

j. The installer creates the IVI standard root directory and the following standard subdirectories:

Bin, Bin\Primary Interop Assemblies, Components, Drivers, and Include,

Lib_x64, Lib_x64\bc, and Lib_x64\msc.

If the installer is successful in creating the directories, the installer proceeds. If the IVI standard root directory

is defined but the directory or any of the subdirectories do not exist, the IVI shared component installer

should create the missing directories.

4.1.2 IVI-COM/IVI-C Driver Installer Responsibilities

This section specifies the IVI driver installer requirements for detecting the IVI standard root directory. The

requirements differ based on the installer type. The different requirements are contained in the subsections

below. The following table indicates the subsection that contains the requirements applicable to each installer

type.

Table 4-1. Applicable specification sections based on installer type

Installer Type Sections that Apply

Singular 32-bit driver installer (32-bit OS) 4.1.2.1, Driver Installer Responsibilities on 32-bit Operating Systems

Singular 32-bit driver installer (64-bit OS) 4.1.2.2, 32-bit Driver Installer Responsibilities on 64-bit Operating

Systems

Singular 32-bit driver installer (32-bit

OS/64-bit OS)

4.1.2.1, Driver Installer Responsibilities on 32-bit Operating

Systems4.1.2.2, 32-bit Driver Installer Responsibilities on 64-bit

Operating Systems

Singular 64-bit driver installer (64-bit OS) 4.1.2.3, 64-bit Driver Installer Responsibilities

Unified 32-bit/64-bit driver installer 4.1.2.2, 32-bit Driver Installer Responsibilities on 64-bit Operating

Systems

4.1.2.3, 64-bit Driver Installer Responsibilities

4.1.2.1 Driver Installer Responsibilities on 32-bit Operating Systems

A driver installer that installs on a 32-bit operating system shall detect the 32-bit IVI standard root directory

by checking for a non-empty value of the following registry key:

<HKLM\SW>\IVI, IviStandardRootDir

Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in the case

where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <HKLM\SW>.

IVI Foundation 38 IVI-3.17: Installation Requirements Specification

If the IVI-COM/IVI-C driver installer calls the IVI-COM/IVI-C shared component installer and the

IviStandardRootDir is not already registered, the IVI-COM/IVI-C driver installer takes the following

actions:

1. If the IVI-COM/IVI-C driver installer is invoked in dialog mode, the installer suggests the following 32-

bit IVI standard root directory path to the user:

<ProgramFilesDir32>\IVI Foundation\IVI

The installer allows the user to change the suggested path to another valid path.

Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the

system, in the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <ProgramFilesDir32>.

2. A failure condition exists if the IVI-COM/IVI-C driver installer is invoked in silent mode with an empty

or invalid path for the 32-bit IVI standard root directory.

3. A failure condition exists if the path that the user or calling program specifies for the 32-bit IVI standard

root directory is one of the following directories or its subdirectories:

¶ The 32-bit VXIplug&play directory. Refer to VXIplug&play specification VPP-6:

Installation and Packaging Specification, for details on the VXIplug&play directory.

Note: This behavior is required so that the IVI-COM/IVI-C driver installer can pass a valid 32-bit IVI

standard root directory path when it invokes the IVI-COM/IVI-C shared component installer in silent

mode. The IVI shared component installer cannot return errors, so validating the 32-bit IVI standard root

directory path beforehand ensures a better user experience.

4.1.2.2 32-bit Driver Installer Responsibilities on 64-bit Operating Systems

A 32-bit driver installer that installs on a 64-bit operating system shall detect the 32-bit IVI standard root

directory by checking for a non-empty value of the following registry key:

<HKLM/SW>\IVI, IviStandardRootDir

Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in the case

where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <HKLM/SW>.

If the IVI-COM/IVI-C driver installer calls the IVI-COM/IVI-C shared component installer and the

IviStandardRootDir is not already registered, the IVI-COM/IVI-C driver installer takes the following

actions:

1. If the IVI-COM/IVI-C driver installer is invoked in dialog mode, the installers suggests the following 32-

bit IVI standard root directory path to the user:

<ProgramFilesDir32>\IVI Foundation\IVI

The installer allows the user to change the suggested path to another valid path.

Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the

system, in the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <ProgramFilesDir32>.

2. A failure condition exists if the IVI-COM/IVI-C driver installer is invoked in silent mode with an empty

or invalid path for the 32-bit IVI standard root directory.

IVI-3.17: Installation Requirements Specification 39 IVI Foundation

3. A failure condition exists if the path that the user or calling program specifies for the 32-bit IVI standard

root directory is one of the following directories or its subdirectories:

¶ The 32-bit and 64-bit VXIplug&play directories. Refer to VXIplug&play specification

VPP-6: Installation and Packaging Specification, for details on the VXIplug&play

directories.

¶ The 64-bit IVI standard root directory.

¶ The <ProgramFilesDir> directory. (Note: This is the 64-bit Program Files directory)

Note: This behavior is required so that the IVI-COM/IVI-C driver installer can pass a valid 32-bit IVI

standard root directory path when it invokes the IVI-COM/IVI-C shared component installer in silent

mode. The IVI-COM/IVI-C shared component installer cannot return errors, so validating the 32-bit IVI

standard root directory path beforehand ensures a better user experience.

4.1.2.3 64-bit Driver Installer Responsibilities

A 64-bit driver installer shall detect the 64-bit IVI standard root directory by checking for a non-empty value

of the following registry key:

<HKLM\SW>\IVI, IviStandardRootDir

Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in the case

where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <HKLM\SW>.

If the IVI-COM/IVI-C driver installer calls the IVI-COM/IVI-C shared component installer and the

IviStandardRootDir is not already registered, the IVI-COM/IVI-C driver installer takes the following

actions:

1. If the IVI-COM/IVI-C driver installer is invoked in dialog mode, the installer suggests the following 64-

bit IVI standard root directory path to the user:

<ProgramFilesDir>\IVI Foundation\IVI

The installer allows the user to change the suggested path to another valid path.

Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the

system, in the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <ProgramFilesDir>.

2. A failure condition exists if the IVI-COM/IVI-C driver installer is invoked in silent mode with an empty

or invalid path for the 64-bit IVI standard root directory.

3. A failure condition exists if the path that the user or calling program specifies for the 64-bit IVI standard

root directory is one of the following directories or its subdirectories:

¶ The 32-bit and 64-bit VXIplug&play directories. Refer to VXIplug&play specification

VPP-6: Installation and Packaging Specification, for details on the VXIplug&play

directories.

¶ The 32-bit IVI standard root directory.

¶ The <ProgramFilesDir32> directory.

Note: This behavior is required so that the IVI-COM/IVI-C driver installer can pass a valid 64-bit IVI

standard root directory path when it invokes the IVI shared component installer in silent mode. The IVI

IVI Foundation 40 IVI-3.17: Installation Requirements Specification

shared component installer cannot return errors, so validating the 64-bit IVI standard root directory path

beforehand ensures a better user experience.

4.2 IVI.NET Standard Root Directory

This section describes the requirements for creating and detecting elements of the IVI.NET standard root

directory tree.

4.2.1 IVI.NET Shared Component Installer Responsibilities

This section specifies the IVI.NET shared component installer requirements for discovering, registering and

creating the IVI.NET standard root directories. The requirements are separated into two parts:

¶ Responsibilities required by both 32-bit and 64-bit installers

¶ Additional responsibilities required by the 64-bit installer

4.2.1.1 32-bit and 64-bit IVI.NET Shared Component Installer Responsibilities

The IVI.NET shared component installers, both 32-bit and 64-bit, shall discover, register and create the 32-bit

IVI.NET standard root directory tree according to the following rules. In these rules, <HKLM\SW> varies by

Operating System and component bitness. Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in

the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for details.

1. The installer checks the Windows registry for a non-empty value of the following registry key in the 32-

bit registry hive:

<HKLM\SW>\IVI, IviNetStandardRootDir

2. If IviNetStandardRootDir is already registered, the installer uses the registered root directory for 32-

bit IVI.NET shared component installations.

3. If IviNetStandardRootDir is not already registered, the installer registers the 32-bit IVI.NET

standard root directory in the Windows registry as:

Table 4-2. IVI.NET 32-bit Standard Root Directory Registry Entries

Root <HKLM\SW>\IVI

Key IviNetStandardRootDir

Value Default Value – <IviNetStandardRootDir32>

4. The installer registers design-time assemblies for use with Visual Studio in the Windows registry as

described in Section 4.2.3, Registering IVI.NET Design-Time Assemblies.

5. The installer creates the 32-bit IVI.NET standard root directory and the following subdirectories:

a. Framework32

b. Framework32\<FrameworkVersionDir>

IVI-3.17: Installation Requirements Specification 41 IVI Foundation

i. The installer creates the <FrameworkVersionDir> directory for the minimum

major.minor .NET Framework version that the shared components it is installing require.

The installer installs the shared components files to this directory.

ii. The installer creates additional, empty, <FrameworkVersionDir> directories for each

released version of the .NET Framework that is newer than the minimum major.minor

.NET Framework version that the shared components it is installing require. The IVI.NET

shared component installer creates these directories so that installers for drivers that depend

on newer versions of the .NET Framework do not have to create these directories.

If the installer is successful in creating the directories, the installer proceeds. If the 32-bit IVI.NET standard

root directory is defined but the directory or any of the subdirectories do not exist, the IVI.NET shared

component installer shall create the missing directories.

4.2.1.2 Additional 64-bit IVI.NET Shared Component Installer Responsibilities

The 64-bit IVI.NET shared component installer shall discover, register, and create the 64-bit IVI.NET

standard root directory tree according to the following rules. In these rules, <HKLM\SW> varies by Operating

System and component bitness. Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in

the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for details.

1. The installer checks the Windows registry for a non-empty value of the following registry key:

<HKLM\SW>\IVI, IviNetStandardRootDir

2. If IviNetStandardRootDir is already registered, the installer uses the registered root directory value for

64-bit .NET shared component installations.

3. If IviNetStandardRootDir is not already registered, the installer registers the 64-bit IVI.NET

standard directory path in the Windows registry as:

Table 4-3. IVI.NET 64-bit Standard Root Directory Registry Entries

Root <HKLM\SW>\IVI

Key IviNetStandardRootDir

Value Default Value – <IviNetStandardRootDir64>

4. The installer creates the 64-bit IVI.NET standard root directory and the following subdirectories:

a. Framework64

b. Framework64\<FrameworkVersionDir>

i. The installer creates the <FrameworkVersionDir> directory for the minimum

major.minor .NET Framework version that the shared components it is installing require.

The installer installs the shared components files to this directory.

ii. The installer creates additional, empty, <FrameworkVersionDir> directories for each

released version of the .NET Framework that is newer than the minimum major.minor

.NET Framework version that the shared components it is installing require. The IVI.NET

shared component installer creates these directories so that installers for drivers that depend

on newer versions of the .NET Framework do not have to create these directories.

IVI Foundation 42 IVI-3.17: Installation Requirements Specification

If the installer is successful in creating the directories, the installer proceeds. If the IVI.NET standard root

directory is defined but the directory or any of the subdirectories do not exist, the IVI.NET shared component

installer should create the missing directories.

4.2.2 IVI.NET Driver Installer Responsibilities

This section specifies the IVI.NET driver installer requirements for detecting the IVI.NET standard root

directory. The requirements differ based on the installer type. The different requirements are contained in

the subsections below. The following table indicates the subsection that contains the requirements applicable

to each installer type.

Table 4-4. Applicable specification sections based on installer type

Installer Type Sections that Apply

Singular 32-bit driver installer (32-bit OS) 4.2.2.1, Driver Installer Responsibilities on 32-bit Operating Systems

Singular 32-bit driver installer (64-bit OS) 4.2.2.2, 32-bit Driver Installer Responsibilities on 64-bit Operating

Systems

Singular 32-bit driver installer (32-bit

OS/64-bit OS)

4.2.2.1, Driver Installer Responsibilities on 32-bit Operating Systems

4.2.2.2, 32-bit Driver Installer Responsibilities on 64-bit Operating

Systems

Singular 64-bit driver installer (64-bit OS) 4.2.2.3, 64-bit Driver Installer Responsibilities

Unified 32-bit/64-bit driver installer
4.2.2.2, 32-bit Driver Installer Responsibilities on 64-bit Operating

Systems

4.2.2.3, 64-bit Driver Installer Responsibilities

4.2.2.1 Driver Installer Responsibilities on 32-bit Operating Systems

An IVI.NET driver installer that installs on a 32-bit operating system shall detect the 32-bit IVI.NET standard

root directory by checking for a non-empty value of the following registry key:

<HKLM\SW>\IVI, IviNetStandardRootDir

Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in the case

where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <HKLM\SW>.

An IVI.NET driver installer shall check for the presence and version of the IVI.NET shared components as

specified in Section 5.2.1, Detecting the Presence of an IVI.NET Shared Components Variant.

An IVI.NET driver installer registers design-time assemblies for use with Visual Studio in the Windows

registry as described in Section 4.2.3, Registering IVI.NET Design-Time Assemblies.

4.2.2.2 32-bit Driver Installer Responsibilities on 64-bit Operating Systems

A 32-bit IVI.NET driver installer that installs on a 64-bit operating system shall detect the 32-bit IVI.NET

standard root directory by checking for a non-empty value for the following registry key:

<HKLM\SW>\IVI, IviNetStandardRootDir

Refer to Section 0,

IVI-3.17: Installation Requirements Specification 43 IVI Foundation

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in the case

where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <HKLM\SW>.

An IVI.NET driver installer shall check for the presence and version of the IVI.NET shared components as

specified in Section 5.2.1, Detecting the Presence of an IVI.NET Shared Components Variant.

An IVI.NET driver installer registers design-time assemblies for use with Visual Studio in the Windows

registry as described in Section 4.2.3, Registering IVI.NET Design-Time Assemblies.

4.2.2.3 64-bit Driver Installer Responsibilities

A 64-bit IVI.NET driver installer shall detect the 64-bit IVI.NET standard root directory by checking for a

non-empty value for the following registry key:

<HKLM\SW>\IVI, IviNetStandardRootDir

Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in the case

where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for information on <HKLM\SW>.

An IVI.NET driver installer shall check for the presence and version of the IVI.NET shared components as

specified in Section 5.2.1, Detecting the Presence of an IVI.NET Shared Components Variant.

A 64-bit IVI.NET driver installer registers design-time assemblies for use with Visual Studio in the Windows

registry as described in Section 4.2.3, Registering IVI.NET Design-Time Assemblies.

4.2.3 Registering IVI.NET Design-Time Assemblies

IVI.NET installers shall register design-time assemblies so that the following is the case:

¶ Microsoft Visual Studio displays the assemblies in the Add References dialog box

¶ Microsoft Visual Studio and MSBuild can resolve project references to the assemblies.

To achieve this for assemblies compiled as “Any CPU”, IVI.NET installers should register design-time

assemblies for use with Visual Studio in the 32-bit Windows registry, as follows:

Table 4-2. IVI.NET Design-Time Assemblies Registry Keys

Root <HKLM\SW>\Microsoft\.NETFramework\<TargetFrameworkVersion>\AssemblyFoldersEx

Note: this is in the 32-bit Windows registry, regardless of the bitness of the installer or components

being registered.

This key is defined by Microsoft. Refer to Microsoft documentation for instructions for creating this

key, including the specific definition of <TargetFrameworkVersion> in this context.

Key Component Version-Specific Directory name, followed by the supported Framework version:

For driver installers – <DriverNamespace> <FullVersion> (<FwkVerShortName>)

For the IVI.NET shared component installer – IVIFoundationSharedComponents
<FullVersion> (<FwkVerShortName>)

IVI Foundation 44 IVI-3.17: Installation Requirements Specification

Value For 64-bit singular driver installers (64-bit OS) – Path, under the 64-bit IVI.NET Standard Root

Directory, to the Component Version-Specific Directory; or, path to a vendor-specific location with a

copy of the assembly identical to the one installed under the IVI.NET Standard Root Directory.

For all other driver installers – Path, under the 32/-bit IVI.NET Standard Root Directory, to the

Component Version-Specific Directory; or, path to a vendor-specific location with a copy of the

assembly identical to the one installed under the IVI.NET Standard Root Directory.

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in

the case where multiple versions of the driver are on the system.

4.3 Determining System Directories and Registry Keys

This specification uses the term <ProgramFilesDir> to refer to the 32-bit Windows Program Files

directory on 32-bit operating systems and the 64-bit Windows Program Files directory on 64-bit operating

systems.

The term <ProgramFilesDir32> refers to the 32-bit Windows Program Files directory on all operating

systems.

This specification uses the term <ProgramDataDir> to refer to the Windows file system directory

containing application data for all users.

The term <HKCR> refers to the location where COM class and type library information is registered. In this

specification, the following values should be substituted for <HKCR>, depending on the operating system and

the bitness of the COM component.

¶ 32-bit versions of Windows, 32-bit COM components: <HKCR> = HKEY_CLASSES_ROOT.

¶ 64-bit versions of Windows, 32-bit COM components: <HKCR> = HKEY_CLASSES_ROOT\

Wow6432Node.

¶ 64-bit versions of Windows, 64-bit COM components: <HKCR> = HKEY_CLASSES_ROOT.

The term <HKLM\SW> refers to the location where HKLM\SOFTWARE information is registered. In this

specification, the following values should be substituted for <HKLM\SW>, depending on the operating system

and the bitness of the component.

¶ 32-bit versions of Windows, 32-bit components: <HKLM\SW> = HKEY_LOCAL_MACHINE\SOFTWARE.

¶ 64-bit versions of Windows, 32-bit components: <HKLM\SW> = HKEY_LOCAL_MACHINE\

SOFTWARE\Wow6432Node.

¶ 64-bit versions of Windows, 64-bit components: <HKLM\SW> = HKEY_LOCAL_MACHINE\SOFTWARE.

To determine the actual path to these directories and registry key, use the functions provided by your installer

tools or the Windows Shell API functions with the identifiers listed in the following table or their equivalents:

IVI-3.17: Installation Requirements Specification 45 IVI Foundation

 Table 4-6. Windows identifiers for operating system directory paths

Directory / Registry Key Windows 7 (32-bit), Windows 8

(32-bit), and Windows 10 (32-

bit)

Windows 7 (64-bit), Windows 8

(64-bit), and Windows 10 (64-

bit)

<ProgramFilesDir32> CSIDL_PROGRAM_FILES CSIDL_PROGRAM_FILESX86

<ProgramFilesDir> CSIDL_PROGRAM_FILES CSIDL_PROGRAM_FILES

<ProgramDataDir> CSIDL_COMMON_APPDATA CSIDL_COMMON_APPDATA

HKEY_LOCAL_MACHINE\

SOFTWARE\WOW6432Node

N/A KEY_WOW64_32KEY

HKEY_LOCAL_MACHINE\

SOFTWARE

N/A

KEY_WOW64_64KEY

Note that Microsoft recommends that applications never access the Wow6432Node key directly as the

implementation may change in future releases. Use Windows registry functions that allow use of

KEY_WOW64_32KEY and KEY_WOW64_64KEY.

4.4 IVI Shared Component Installer Responsibilities on Windows 7, Windows 8, and

Windows 10

On Windows 7, Windows 8, and Windows 10 the IVI shared component installer shall adhere to the

following additional rules:

1. If the installer is invoked in dialog mode without admin privileges, the installer shall prompt for

elevation. If the installer is invoked in silent mode without admin privileges, a failure condition exists

and the installer shall abort.

2. In releases of the IVI-COM/IVI-C shared component installer prior to January 1, 2018, the installer sets

the attributes of the IVI standard root directories to disable virtualization and allow modification without

admin privileges. In releases after January 1, 2018, the installer shall set the attributes of the IVI standard

root directory to require admin privileges for modification. The installer shall do this in the case where

the directory already exists and in the case where the installer is creating the directory.

4.5 IVI Driver Installer Responsibilities on Windows 7, Windows 8, and Windows 10

On Windows 7, Windows 8, and Windows 10, if the IVI driver installer calls the IVI shared component

installer it shall invoke the IVI shared component installer with admin privileges.

IVI Foundation 46 IVI-3.17: Installation Requirements Specification

5. IVI Driver Installer Requirements

This section describes the requirements specific to IVI driver installers, other than the requirements described

in Section 4, IVI Directory Structure Creation and Detection Requirements .

5.1 IVI-COM/IVI-C Driver Installation Procedure

An IVI-COM/IVI-C installer program shall install driver files according to the following procedure:

1. The IVI-COM/IVI-C installer checks the bitness of the Windows operating system and exits with a

failure condition if the operating system bitness does not match any of the operating system bitnesses

that the installer supports.

2. The IVI-COM/IVI-C installer detects the IVI standard root directory as specified in Section 4.1.1, IVI-

COM/IVI-C Shared Component Installer Responsibilities.

3. For each supported operating system bitness, if the IVI standard root directory exists, the IVI-COM/IVI-

C installer checks for the presence and version of the IVI-COM/IVI-C shared components as specified in

Section 5.1.1, Detecting the Presence and Version of the IVI-COM/IVI-C Shared Components.

4. For each supported operating system bitness, if the IVI standard root directory does not exist, or the IVI-

COM/IVI-C shared components are not installed or not of a sufficient version, the installer takes one of

the following two actions:

a. The IVI-COM/IVI-C installer calls the IVI-COM/IVI-C shared component installer according to

the requirements specified in Section 5.1.3, Calling the IVI-COM/IVI-C Shared Component

Installer. After the IVI-COM/IVI-C shared component installation completes, the IVI-

COM/IVI-C installer repeats steps 1 and 2 to verify that the IVI-COM/IVI-C shared component

installer completed successfully.

b. The IVI-COM/IVI-C installer exits with a failure condition. If the installer was invoked in

dialog mode, the installer informs the user that the user must first execute the IVI-COM/IVI-C

shared component installer and informs the user where to find the IVI-COM/IVI-C shared

component installer.

5. The IVI-COM/IVI-C installer checks for the presence, vendor, and version of a previously installed IVI-

COM or IVI-C driver of the same name. The installer does this as specified in Section 5.1.2, Detecting

the Presence, Vendor, and Version of an IVI-COM or IVI-C Driver. If an IVI-COM or driver IVI-C of

the same name does exist, the installer takes the following actions. (If drivers of the same name but

different bitness exist, the installer repeats these actions for each existing driver.)

a. A failure condition exists if the vendor of the existing driver does not match the vendor of the

driver to be installed or if the vendor of the driver to be installed matches the existing driver but

the version of the driver to be installed is less than the version of the existing driver.

b. If the vendor is the same and the version of the driver to be installed is higher than or equal to

the version of the existing driver, the IVI Foundation recommends that the installer proceed

with the installation, removing any traces of the previously installed driver while installing the

new driver. Alternatively, the installer may exit with a failure condition. If the versions are

equal, the driver installer may also exit without a failure condition, run in “repair” mode, or run

in “modify” mode.

6. For each supported operating system bitness, the installer creates the standard driver specific directory.

7. For each supported operating system bitness, the installer installs driver files into the appropriate

subdirectories of the IVI standard directory tree, as specified in Section 2.5.1.4, Contents of the IVI-

COM/IVI-C Standard Directory Tree.

8. If any of the driver files are specific to an ADE that requires the files to be in a particular directory

outside the IVI standard directory tree, the IVI-COM/IVI-C installer may install such files to that

directory. The IVI Foundation recommends that the installation program install such files only if the

ADE is present on the system.

IVI-3.17: Installation Requirements Specification 47 IVI Foundation

9. If the Microsoft .NET Framework exists on the system, then for each supported operating system bitness,

the IVI-COM/IVI-C installer shall put the PIAs into the Global Assembly Cache and register each PIA.

Refer to Section 3.8, Legacy PIA Considerations for Drivers, in IVI-3.14: Primary Interop Assembly

Specification, for specific files and versions to install.

10. The installer registers the driver with the master IVI configuration store as specified in Section 3.4,

Installing Software Modules, in IVI-3.5: IVI Configuration Server Specification. If a software module

entry with the same Name property value as the driver being installed already exists in the IVI

configuration store, the installer first deletes the existing software module entry and then re-creates the

software module entry. Refer to Section 5.1.4, IVI-COM/IVI-C Software Module Entries in the IVI

Configuration Store, for how to register software modules.

11. The installer makes any Windows system registry entries that the driver requires as specified in Section

8, Registry Requirements.

12. The installer registers an uninstaller program in the standard Windows Control Panel facility for adding

and removing programs.

13. If the installer is implemented with MSI technology, the installer shall not set the installed components to

be “repaired” automatically.

5.1.1 Detecting the Presence and Version of the IVI-COM/IVI-C Shared Components

An IVI-COM/IVI-C driver installer shall determine the presence of the IVI-COM/IVI-C shared components

based on the presence or absence of the IVISharedComponentVersion.dll file in the

<IVIStandardRootDir>\Bin directory.

If the IVISharedComponentVersion.dll file exists, the IVI-COM/IVI-C driver installer shall determine

the version of the shared components by interrogating the value of FileVersion property of the

IVISharedComponentVersion.dll file.

5.1.2 Detecting the Presence, Vendor, and Version of an IVI-COM or IVI-C Driver

An IVI-COM/IVI-C driver installer shall determine the presence of an IVI-COM or IVI-C driver based on the

presence or absence of the DLL for the driver in the <IVIStandardRootDir>\Bin directory. Refer to

Section 5.15.10, Packaging, in IVI-3.1: Driver Architecture Specification, for the DLL filename

specifications for IVI-COM drivers. Refer to Section 5.15.10, Packaging, in IVI-3.1: Driver Architecture

Specification, for the DLL filename specifications for IVI-C drivers.

Installers that install on 32-bit operating systems shall check the presence of a 32-bit driver DLL in the

<IVIStandardRootDir32>\Bin directory. Installers that install on 64-bit operating systems shall check

the presence of both a 32-bit driver DLL in the <IVIStandardRootDir32>\Bin directory and a 64-bit

driver DLL in the <IVIStandardRootDir64>\Bin directory.

For each driver DLL file that exists, the installer determines the vendor of the existing driver by interrogating

the value of the CompanyName property of the driver DLL file. The installer determines the version of the

existing driver by interrogating the value of the FileVersion property of the driver DLL file or by another

method that returns the same value as the FileVersion property. Refer to Section 5.18, File Versioning, in

IVI-3.1: Driver Architecture Specification, for details on using the FileVersion property.

Note: The IVI-COM/IVI-C driver installer may utilize a different detection mechanism if the implementation

is functionally equivalent to the detection mechanism described in this section.

IVI Foundation 48 IVI-3.17: Installation Requirements Specification

5.1.3 Calling the IVI-COM/IVI-C Shared Component Installer

An IVI-COM/IVI-C driver installer that calls the IVI-COM/IVI-C shared component installer shall comply

with the following rules:

¶ For each supported operating system bitness, the IVI-COM/IVI-C driver installer detects the IVI

standard root directory according to the requirements specified in Section 4.1.2, IVI-COM/IVI-C Driver

Installer Responsibilities.

¶ For each supported operating system bitness, if the IVI standard root directory is not already defined, the

installer prompts the user to specify a directory path.

¶ The installer calls the IVI-COM/IVI-C shared component installer with the silent mode command line

option. Refer to Section 3.1, Silent and Dialog Installation Modes, and Section 7.1, IVI Shared

Component Installer Command Line Syntax, for more information. For each supported operating system

bitness, if the IVI standard root directory is not already defined, the IVI-COM/IVI-C driver installer

passes the user-specified directory path to the IVI-COM/IVI-C shared component installer.

¶ If the IVI-COM/IVI-C shared component installer causes the system to reboot after the IVI-COM/IVI-C

shared component installation completes, the IVI-COM/IVI-C driver installer shall resume installation

after the system has rebooted.

¶ The IVI-COM/IVI-C driver installer verifies that the IVI-COM/IVI-C shared component installer

completed successfully by taking the following actions:

o The IVI-COM/IVI-C driver installer detects the IVI standard root directory as specified in Section

4.1.2, IVI-COM/IVI-C Driver Installer Responsibilities.

o If the IVI standard root directory exists, the IVI-COM/IVI-C driver installer checks for the

presence and version of the IVI-COM/IVI-C shared components as specified in 5.1.1, Detecting

the Presence and Version of the IVI-COM/IVI-C Shared Components.

¶ If the IVI-COM/IVI-C shared components are installed and are of sufficient version, the driver installer

proceeds with driver installation.

5.1.4 IVI-COM/IVI-C Software Module Entries in the IVI Configuration Store

An IVI-COM/IVI-C driver installer shall create a software module entry for the driver in the IVI

configuration store, as specified in IVI-3.5: Configuration Server Specification.

If a C or COM wrapper is installed with the native driver, the driver installer shall not create a separate

software module entry for the wrapper.

If a C or COM wrapper is installed separately from the native driver, the wrapper installer shall create a

separate software module entry for the wrapper. The name of the software module entry for the wrapper shall

be the prefix or component identifier of the native driver followed by “CWrapper” or “COMWrapper”.

Note: IVI.NET wrappers shall always be packaged separately from IVI.COM and IVI-C drivers.

Table 5-1 summarizes the requirements for software module attribute values. Software module attribute

values shall conform to the values listed in Table 5-1.

An installer that installs a 32-bit driver shall set the ModulePath32 property to the name of the 32-bit DLL.

An installer that installs a 64-bit driver shall set the ModulePath64 property to the name of the 64-bit DLL.

Notice that ModulePath32 and ModulePath64 shall not be the full pathname of the driver DLL for any of the

IVI driver package types. Since all IVI driver executables are installed in <IviStandardRootDir>\Bin,

the full pathname is redundant, and the simple file name of the software module is sufficient.

IVI-3.17: Installation Requirements Specification 49 IVI Foundation

Table 5-1. Software Module Entries for IVI-COM and IVI-C Drivers

Package Type Name ModulePath32/

ModulePath64

Prefix ProgID Assembly

Qualified

Class

Name

IVI-C driver Prefix File name of

software module

Prefix Empty

String

Empty

String

IVI-C driver

packaged with

IVI-COM

wrapper

Prefix File name of

software module
Prefix Version-

independe

nt COM

ProgID of

COM

wrapper

class

Empty

String

IVI-COM driver Component

Identifier

Empty string Component

Identifier

Version-

independe

nt COM

ProgID of

COM

wrapper

Empty

String

IVI-COM driver

packaged with

IVI-C wrapper

Prefix of IVI-C

wrapper

File name of

software module

Prefix of

IVI-C

wrapper

Version-

independe

nt COM

ProgID of

COM

driver

Empty

String

IVI-C wrapper

packaged

separately

Prefix with

“CWrapper”

appended

File name of

software module

Prefix Empty

string

Empty

String

IVI-COM

wrapper

packaged

separately

Component

Identifier with

“COMWrapper”

appended

Empty string Component

Identifier

Version-

independe

nt COM

ProgID of

COM

wrapper

Empty

String

IVI Foundation 50 IVI-3.17: Installation Requirements Specification

Table 5-2 lists example attribute values for an IVI-COM driver installed with a C wrapper where the IVI-

COM component identifier is “Agilent34401A” and the C wrapper’s prefix is “Ag34401a”.

Table 5-2. Example Software Module Entries for an IVI-COM driver
installed with a C wrapper

Software Module

Attribute

Value

Name Ag34401a

ModulePath32 Ag34401a.dll

Prefix Ag34401a

ProgID Agilent34401A.Agilent34401A

For additional requirements on creating Software Module Entries in the IVI Configuration Store, refer to

Section 5.3, Details on Software Module Entries in the IVI Configuration Store.

5.1.5 IVI-COM/IVI-C Driver Uninstaller

The IVI-COM/IVI-C driver installer shall provide a mechanism for the user to uninstall the driver that was

previously installed. The uninstaller mechanism shall do the following:

¶ Remove all Windows registry entries for the driver.

¶ Removes the PIAs from the Global Assembly Cache and unregisters the PIAs.

¶ Remove all files for the driver.

¶ Remove the standard driver specific directory for the driver from the

<IVIStandardRootDir>\Drivers directory, if it is empty.

¶ Remove the Software Module entry for the driver from the master IVI configuration store as specified in

Section 3.4.2, Uninstalling Software Modules, in IVI-3.5: IVI Configuration Server Specification.

The uninstaller mechanism shall not do the following:

¶ Modify or remove IVI-COM/IVI-C shared component files.

¶ Modify or remove the IVI standard root directory or any of the standard common files directories.

¶ Modify or remove any IVI-COM/IVI-C driver session configuration entries in the master IVI

configuration store.

5.1.6 Installation of Vendor Specific Shared Components

An IVI-COM/IVI-C driver supplier may have components that many of its drivers share. The driver supplier

may bundle the installer for these components with each driver or make the installer available separately. If a

separate installer is available, it is not an “IVI-COM/IVI-C installer” and is not required to comply with the

rules for IVI installers other than the requirements specified in this section.

For any vendor specific shared component files that are installed in the IVI standard root directory tree, the

installer shall comply with the following rules:

¶ The vendor specific shared component files shall be installed after the IVI-COM/IVI-C shared

components are installed. The installer detects the presence of the IVI-COM/IVI-C shared components

according to the requirements specified in 5.1.1, Detecting the Presence and Version of the IVI-

COM/IVI-C Shared Components. The installer may call the IVI-COM/IVI-C shared component installer

IVI-3.17: Installation Requirements Specification 51 IVI Foundation

as specified in Section 5.1.3, Calling the IVI-COM/IVI-C Shared Component Installer.

¶ DLL files, DLL import library files, and include files shall be installed into the Bin, Lib, Lib_x64, and

Include subdirectories of the IVI standard root directory. 32-bit DLLs shall be installed in the 32-bit

IVI standard root directory tree, and 64-bit DLLs shall only be installed in the 64-bit IVI standard root

directory tree. 32-bit import libraries shall only be installed in the 32-bit IVI standard root directory tree.

64-bit import libraries shall be installed in both the 32-bit and 64-bit IVI standard root directory trees.

Include files shall be installed in both the 32-bit and 64-bit IVI standard root directory trees.

¶ For DLLs that drivers or applications find using the Windows search path mechanism, 64-bit DLL names

shall differ from 32-bit DLL names.

¶ Other types of files shall be installed into a subdirectory of the IVI-COM/IVI-C shared component

directory tree. The name of the subdirectory should uniquely identify the vendor. If the subdirectory is a

two-character prefix, the prefix shall be reserved in the VXIplug&play specification VPP-9: Instrument

Vendor Abbreviations. If the vendor specific subdirectory has not yet been created, the installer shall

create it.

5.1.7 Installation of IVI-COM/IVI-C Driver Start Menu Items for Windows 7 and Windows 10

If an IVI-COM/IVI-C Driver installer creates items in the Start Menu, it shall do so according to the

following guidelines:

¶ Subfolders named “IVI” and “IVI Foundation” directly accessible on the start menu shall be reserved for

use by components created and maintained by the IVI Foundation.

¶ The driver installer shall place all start menu shortcuts under a subfolder indicating the instrument driver

vendor. For example, an instrument driver supplied by National Instruments would place shortcuts under

a “National Instruments” subfolder in the start menu.

¶ The driver installer may choose to place all start menu shortcuts under an additional subfolder that holds

shortcuts related only to that driver. For example, the Agilent Technologies instrument driver for the

34401 digital multimeter may place shortcuts in an “Agilent Technologies IVI Drivers>> Agilent34401”

subfolder.

¶ The driver installer shall not place any start menu shortcuts under a subfolder named “IVI” or “IVI

Foundation” unless that subfolder is placed inside another subfolder that identifies the instrument driver

vendor. For example, an Agilent Technologies instrument driver for the 34401 digital multimeter may

place shortcuts in an “Agilent Technologies Drivers>> IVI” subfolder.

¶ The IVI Foundation recommends that driver suppliers use the following guidelines for denoting bitness

in Start Menu entries for IVI-COM/IVI-C drivers.

o On 32-bit operating systems, Start Menu entries do not denote bitness.

o On 64-bit operating systems, Start Menu entries denote bitness only when it is important for

users to distinguish between 32-bit and 64-bit versions of files or folders. Start Menu entries

should denote bitness by appending “(32-bit)” to 32-bit files and folder entries and “(64-bit)” to

64-bit files and folder entries.

o Start Menu entries should not denote bitness when linking to items that are not bit-specific. For

example, if the Start Menu has two separate entries for 64-bit and 32-bit help files, but the help

files are identical copies from two different directories, then the Start Menu entry should not

denote bitness. In this case, an even better solution might be to include one only Start Menu

entry for the help file.

Instrument driver installers released prior to January 1, 2007, are not subject to the start menu requirements in

this section.

IVI Foundation 52 IVI-3.17: Installation Requirements Specification

5.1.8 Installation of IVI-COM/IVI-C Driver Start and Apps Screen Tiles for Windows 8 and

Windows 10

If an IVI-COM/IVI-C Driver installer creates Windows Start or Apps screen tiles, it shall do so according to

the following guidelines:

¶ Driver installers shall not create Start screen tiles for installed components that are not applications.

Driver installers may create Start screen tiles for installed components that are applications.

¶ Driver installers may optionally create Apps screen tiles for installed components, whether applications

or not.

¶ Apps screen sections named “IVI” and “IVI Foundation” shall be reserved for use by components

created and maintained by the IVI Foundation.

¶ The driver installer shall place all Apps screen tiles under a section indicating the instrument driver

vendor. For example, an instrument driver supplied by National Instruments would place tiles under a

“National Instruments” section.

¶ Tile names shall include the driver prefix or component ID.

¶ On 64-bit operating systems, tile names shall include bitness when it is important for users to distinguish

between 32-bit and 64-bit versions of files. Tile names shall denote bitness by appending “(32-bit)” and

“(64-bit)”.

5.2 IVI.NET Driver Installation Procedure

An IVI.NET driver installer program shall install driver files according to the following procedure:

1. The IVI.NET driver installer checks the bitness of the Windows operating system and exits with a failure

condition if the operating system bitness does not match any of the operating system bitnesses that the

installer supports.

2. For each supported operating system bitness, the IVI.NET driver installer checks for the presence and

version of the IVI.NET shared components as specified in Section 5.2.1, Detecting the Presence of an

IVI.NET Shared Components Variant.

3. For each supported operating system bitness, if the IVI.NET shared components of the required version

are not installed, the installer takes one of the following two actions:

a. The IVI.NET driver installer calls the IVI.NET shared component installer according to the

requirements specified in Section 5.2.3, Calling the IVI.NET Shared Component Installer. After the

IVI.NET shared component installation completes, the IVI.NET driver installer repeats steps 1

through 3 to verify that the IVI.NET shared component installer completed successfully.

b. The IVI.NET driver installer exits with a failure condition. If the installer was invoked in dialog

mode, the installer informs the user that the user must first execute the IVI.NET shared component

installer and informs the user where to find the IVI.NET shared component installer.

4. The IVI.NET driver installer checks for the presence and vendor of a previously installed IVI.NET driver

variant of the same name, .NET Framework Version, and Full Version. The installer does this as

specified in Section 5.2.2, Detecting the Presence and Vendor of an IVI.NET Driver Variant. If a

previously installed IVI.NET driver variant of the same name, .NET Framework Version, and Full

Version does exist, the installer takes the following actions. (The driver install shall do this for each

bitness it supports..)

a. A failure condition exists if the vendor of the existing driver variant does not match the vendor of

the driver variant to be installed.

5. For each supported operating system bitness, the installer creates the Component Version-Specific

Directory for the driver, if it does not already exist. The pathname of the Component Version-Specific

Directory for the driver variant is based on the bitness, .NET Framework Version, and Full Version of

the variant. Refer to Section 1.3.2, Definition of IVI.NET Installation Terms, for the format of the

Component Version-Specific Directory.

IVI-3.17: Installation Requirements Specification 53 IVI Foundation

6. For each supported operating system bitness, the installer installs driver files into the appropriate

subdirectories of the IVI.NET standard directory tree, as specified in Section 2.5.2.4, Contents of the

IVI.NET Standard Directory Tree.

7. The installer shall install any required publisher policy files to the GAC. The publisher policy files cause

existing applications to use the version being installed instead of the version with which the applications

were built. Driver developers may choose not to ship a policy file if they do not want to upgrade existing

client applications to the new driver version automatically.

8. If any of the driver files are specific to an ADE that requires the files to be in a particular directory

outside the IVI.NET standard directory tree, the IVI.NET driver installer may install such files to that

directory. The IVI Foundation recommends that the installation program installs such files only if the

ADE is present on the system.

9. The installer registers the driver with the master IVI configuration store as specified in Section 3.4,

Installing Software Modules, in IVI-3.5: IVI Configuration Server Specification. If a software module

entry with the same Name property value as the driver being installed already exists in the IVI

configuration store, the installer first deletes the existing software module entry and then re-creates the

software module entry. Refer to Section 5.2.4, IVI.NET Software Module Entries in the IVI

Configuration Store, for instructions on how to register software modules.

10. The installer creates any Windows system registry entries that the driver requires as specified in Section

8, Registry Requirements.

11. The installer registers an uninstaller program in the standard Windows Control Panel facility for adding

and removing programs.

12. If the installer is implemented with MSI technology, the installer shall not set the installed components to

be “repaired” automatically.

5.2.1 Detecting the Presence of an IVI.NET Shared Components Variant

An IVI.NET driver installer shall determine the presence of a specific variant of the IVI.NET shared

components based on the presence or absence of the IviFoundationSharedComponentsVersion.dll

file in the Component Version-Specific Directory for the variant.

If the IviFoundationSharedComponentsVersion.dll file exists, the IVI.NET driver installer shall

determine the Full Version of the shared components by interrogating the value of FileVersion property of the

IviFoundationSharedComponentsVersion.dll file.

5.2.2 Detecting the Presence and Vendor of an IVI.NET Driver Variant

An IVI.NET driver installer shall determine the presence of the IVI.NET driver variant that it installs based

on the presence or absence of the version identification file for the driver in the Component Version-Specific

Directory for the variant. Refer to Section 1.3.2, Definition of IVI.NET Installation Terms, for the format of

the version identification file name.

If the version identification file exists, the installer shall determine the vendor of the existing driver by

interrogating the value of the CompanyName property of the version identification file.

If the version identification file exists, the installer shall determine the Full Version of the existing driver by

interrogating the value of the FileVersion property of the version identification file or by another method that

returns the same value as the FileVersion property. Refer to Section 5.18, File Versioning, in IVI-3.1: Driver

Architecture Specification, for details on using the FileVersion property.

IVI Foundation 54 IVI-3.17: Installation Requirements Specification

5.2.3 Calling the IVI.NET Shared Component Installer

An IVI.NET driver installer that calls the IVI.NET shared component installer shall comply with the

following rules:

¶ For each operating system bitness that the IVI.NET driver supports, the IVI.NET driver installer detects

the presence the IVI.NET shared components variant that the driver requires, according to the

requirements specified in Section 5.2.1, Detecting the Presence of an IVI.NET Shared Components

Variant.

¶ The IVI.NET driver installer calls the IVI.NET shared component installer with the silent mode

command line option. Refer to Section 3.1, Silent and Dialog Installation Modes, and Section 7.1.2,

IVI.NET Shared Component Installer Command Line Syntax, for more information.

¶ If the IVI.NET shared component installer causes the system to reboot after the IVI.NET shared

component installation completes, the IVI.NET driver installer shall resume installation after the system

has rebooted.

¶ The IVI.NET driver installer verifies that the IVI.NET shared component installer completed

successfully by taking the following actions:

o The IVI.NET driver installer checks for the presence and version of the required IVI.NET shared

components variant as specified in Section 5.2.1, Detecting the Presence of an IVI.NET Shared

Components Variant.

¶ If the required variant of the IVI.NET shared components is installed, the driver installer proceeds with

driver installation.

5.2.4 IVI.NET Software Module Entries in the IVI Configuration Store

An IVI.NET driver installer shall create a software module entry for the driver variant in the IVI

configuration store, as specified in IVI-3.5: Configuration Server Specification. Each driver variant has a

separate software module entry.

Note: IVI.NET wrappers shall always be packaged separately from IVI-COM and IVI-C drivers.

Table 5-3. Software Module Entries for IVI.NET Drivers

Package

Type

Name ModulePat

h32/Modul

ePath64

Prefix ProgID Assembly

Qualified

Class Name

IVI.NET

driver

<DriverNamespace>

<FullVersion>

<FwkVerShortName>

Empty

String

Component

Identifier

Empty

string

Driver’s

Assembly

Qualified

Class Name

IVI.NET

wrapper

<DriverNamespace>”Wrapper”

<FullVersion>

<FwkVerShortName>

Empty

String

Component

Identifier

Empty

string

Driver’s

Assembly

Qualified

Class Name

As an example, for an IVI.NET driver variant with an IVI.NET driver namespace of

“Agilent.Agilent34401a”, a Version of “2.5.0”, and a .NET Framework Version of “v3.0” the Software

Module Entry name is the following:

Agilent.Agilent34401a v2.5.0 Fx30

If the driver variant is a wrapper, the name is the following:

IVI-3.17: Installation Requirements Specification 55 IVI Foundation

Agilent.Agilent34401aWrapper v2.5.0 Fx30

For additional requirements on creating Software Module Entries in the IVI Configuration Store, refer to

Section 5.3, Details on Software Module Entries in the IVI Configuration Store.

5.2.5 IVI.NET Driver Uninstaller

The IVI.NET driver installer shall provide a mechanism for the user to uninstall the driver variant that was

previously installed. The uninstaller mechanism shall do the following:

¶ Remove all Windows registry entries for the driver.

¶ Remove the assemblies and policy files from the GAC.

¶ Remove all files for the driver variant.

¶ Remove the Component Version-Specific Directory for the driver variant.

¶ Remove the Software Module entry for the driver variant from the master IVI configuration store as

specified in Section 3.4.2, Uninstalling Software Modules, in IVI-3.5: IVI Configuration Server

Specification.

The uninstaller mechanism shall not do the following:

¶ Modify or remove IVI.NET shared component files.

¶ Modify or remove the IVI.NET standard root directory or any of its subdirectories that are not specific to

a particular driver..

¶ Modify or remove any IVI.NET driver session configuration entries in the master IVI configuration

store.

5.2.6 Installation of Vendor Specific Shared Components

An IVI.NET driver supplier may have components that many of its drivers share. The driver supplier may

bundle the installer for these components with each driver or make the installer available separately. If a

separate installer is available, it is not an “IVI installer” and is not required to comply with the rules for IVI

installers other than the requirements specified in this section.

For any vendor specific shared component files that are installed in the IVI.NET standard root directory tree,

the installer shall comply with the following rules:

¶ The vendor specific shared component files shall be installed after the required version of the IVI.NET

shared components are installed. The installer detects the presence of the IVI.NET shared components

variant it requires according to the requirements specified in Section 5.2.1, Detecting the Presence of an

IVI.NET Shared Components Variant. The installer may call the IVI.NET shared component installer as

specified in Section 5.2.3, Calling the IVI.NET Shared Component Installer.

¶ Assemblies shall be installed into the Component Version-Specific Directory and the GAC.

5.2.7 Installation of IVI.NET Driver Start Menu Items on Windows 7 and Windows 10

If an IVI.NET Driver installer creates items in the Start Menu, it shall do so according to the following

guidelines:

¶ IVI.NET driver installers may create Start Menu shortcuts under a driver subfolder that holds shortcuts

related only to the driver variant. For example, the Agilent Technologies instrument driver for the 34401

digital multimeter, version 2.5.0, .NET Framework version 3.0 may place shortcuts in an “Agilent

IVI Foundation 56 IVI-3.17: Installation Requirements Specification

Technologies IVI Drivers|Agilent34401|2.5.0|Fx30” subfolder.

¶ The IVI Foundation recommends that driver suppliers use the following guidelines for denoting bitness

in Start Menu entries for IVI.NET drivers.

o On 32-bit operating systems, Start Menu entries do not denote bitness.

o On 64-bit operating systems, Start Menu entries denote bitness only when it is important for

users to distinguish between 32-bit and 64-bit versions of files or folders. Start Menu entries

should denote bitness by appending “(32-bit)” to 32-bit files and folder entries and “(64-bit)” to

64-bit files and folder entries.

o Start Menu entries should not denote bitness when linking to items that are not bit-specific. For

example, if the Start Menu has two separate entries for 64-bit and 32-bit help files, but the help

files are identical copies from two different directories, then the Start Menu entry should not

denote bitness. In this case, an even better solution might be to include one only Start Menu

entry for the help file.

5.2.8 Installation of IVI.NET Driver Start and Apps Screen Tiles for Windows 8 and Windows

10

If an IVI.NET Driver installer creates Windows Start or Apps screen tiles, it shall do so according to the

following guidelines:

¶ Driver installers shall not create Start screen tiles for installed components that are not applications.

Driver installers may create Start screen tiles for installed components that are applications.

¶ Driver installers may optionally create Apps screen tiles for installed components, whether applications

or not.

¶ Apps screen sections named “IVI” and “IVI Foundation” shall be reserved for use by components

created and maintained by the IVI Foundation.

¶ The driver installer shall place all Apps screen tiles under a section indicating the instrument driver

vendor. For example, an instrument driver supplied by National Instruments would place tiles under a

“National Instruments” section.

¶ Tile names shall include the driver prefix or component ID and the driver version. The framework

version designator (e.g. “Fx30”) is optional.

¶ On 64-bit operating systems, tile names shall include bitness when it is important for users to distinguish

between 32-bit and 64-bit versions of files. Tile names shall denote bitness by appending “(32-bit)” and

“(64-bit)”.

5.3 Details on Software Module Entries in the IVI Configuration Store

5.3.1 Including Published API Collections in the IVI Configuration Store

An driver shall include the following in the Published API collection in the software module entry:

¶ All drivers: IviDriver. The major and minor version of the Published API item shall match the latest

version of IVI-3.2, Inherent Capabilities Specification, that the driver supports.

¶ All class-compliant specific drivers: A Published API item for each IVI class specification the driver

implements. The major and minor version of each Published API item shall match the latest version of

the class specification that the driver supports.

For each of the above, the driver shall include a separate Published API item for driver type (IVI-COM, IVI-

C, or IVI.NET) it supports.

For example, an IVI-COM driver with the IVI-C wrapper would include the following Published API items:

IVI-3.17: Installation Requirements Specification 57 IVI Foundation

¶ IviDriver, IVI-C, 1,0

¶ IviDmm, IVI-C, 3,0

¶ IviDriver, IVI-COM, 1,0

¶ IviDmm, IVI-COM, 3,0

An IviDmm class-compliant IVI.NET driver would include the following Published API items:

¶ IviDriver, IVI.NET, 1,0

¶ IviDmm, IVI.NET, 3,0

Refer to Section 9, IVI Published API Class, in IVI-3.5: Configuration Server Specification, for details on

constructing a Published API item.

5.3.2 Including Repeated Capability Identifiers in the IVI Configuration Store

An IVI driver shall include its statically-known physical identifiers in the software module entry. In cases

where the driver defines qualified physical identifiers, the qualified name shall be used as the Name property

in the IVI Physical Name object.

In cases where a repeated capability is defined by an IVI class specification, the RCName in the IVI Physical

Name object shall be the repeated capability name as defined in the class specification.

Note: If the driver exports multiple class-compliant interfaces and the class-specifications use different

repeated capability names for the same capability, the RCName shall be one of the repeated capability names

defined in the class specifications.

5.3.3 Defining Configurable Initial Settings in the IVI Configuration Store

If an IVI driver allows the user to set the initial value of one or more of its attributes through the IVI

configuration store, the installation program for the IVI specific driver shall create the IVI configuration store

entries as shown in the UML (Unified Modeling Language) object diagram below.

The software module entry for the IVI driver is represented as an IVI Software Module object. The IVI

Software Module object contains an IVI Data Components collection. If the driver has one or more

configurable initial settings, the installation program for the driver shall create a member of the IVI Data

Components collection that is an IVI Structure object with “Configurable Initial Settings” as the value of the

Name property. This IVI Structure object shall contain a collection of IVI Data Component objects, each of

which represents an attribute setting and has the same data type as the attribute. If the driver has no

configurable initial settings the installation program for the driver need not create the “Configurable Initial

Settings” object.

IVI Foundation 58 IVI-3.17: Installation Requirements Specification

IVI-3.17: Installation Requirements Specification 59 IVI Foundation

If an attribute applies to a repeated capability, the driver may allow the user to set all instances of the attribute

to one value, or the driver may allow the user to set each instance to a different value. If the driver allows the

user to set all instances to one value, the installer shall create a single IVI Data Component object for the

attribute. If the driver allows the user to set each instance to a different value, the installer shall create a

separate IVI Data Component object for each instance.

The following list describes the values to use for the properties in the IVI Data Component objects that

represent attribute settings in the IVI Software Module object. Refer to Section 2.8.1, IVI Data Component,

in IVI-3.5: IVI Configuration Server Specification, for more information on the IVI Data Component

properties.

¶ Description: A string that describes the intent of the driver developer in making the attribute

configurable through the IVI configuration store.

¶ Name: The unique name with which to identify the IVI Data Component object for a particular attribute

setting. The name shall be unique within the collection owned by the “Configurable Initial Settings”

object. This property shall include the English name of the attribute. If an attribute applies to a repeated

capability and the driver allows the user to set each instance of the attribute to a separate value, the name

shall also identify the particular instance. For example, the name for the Output Enabled attribute for

channel 1 might be “Channel Enabled [Ch1]”.

¶ SoftwareModuleKey: A string that the IVI driver uses to identify the attribute and the repeated

capability instance, if any. The driver defines the contents of the string. Configuration utility programs

should not display the string to the user.

¶ HelpFilePath: The fully specified path to an external help file that contains documentation for the

attribute. Usually, this is the help file for the IVI driver. The value of this property may be the empty

string if the Description property provides complete information for the attribute.

¶ HelpContextID: The numeric help context ID that points to the section of the help file relevant to the

attribute. This property is irrelevant if the Help File Path property is an empty string.

¶ Type: This property is set by the IVI Configuration Server and contains one of the following values

depending on the type of the IVI Data Component object: “Boolean”, “Real”, “Integer”, “String”, and

“APIReference”. The “Structure” type shall not be used.

¶ Units: A string that specifies the units for a real or integer attribute. This property is optional and may

be an empty string.

¶ UsedInSession: A string indicating whether an IVI Driver Session object that refers to the IVI

Software Module object is required to have a copy of IVI Data Component object for the attribute

setting. The valid values are “Required” and “Optional”. The value “None” shall not be used.

If the value is “Required”, the IVI Configuration Server automatically copies the IVI Data Component

object to the IVI Driver Session object that refers to the IVI Software Module object. The configuration

utility allows the user to set the value of the attribute to something other than the default value.

If the value is “Optional”, the configuration utility allows the users to decide whether to specify an initial

setting for the attribute. If the user decides to specify an initial setting, the configuration utility copies

the IVI Data Component object to the IVI Driver Session object, and the configuration utility allows the

user to set the value of the attribute to something other than the default value.

¶ Value: A valid default value for the attribute.

¶ ReadOnly: This is always TRUE. End users may not modify anything in a software module entry.

In the copy of the IVI Data Component object that exists in the IVI Driver Session object, the following

properties have different meanings or values:

¶ Value: The initial value of the attribute.

¶ ReadOnly: This is always FALSE. The user can modify the Value property through the configuration

utility.

IVI Foundation 60 IVI-3.17: Installation Requirements Specification

After the IVI Data Component objects for the configuration settings are copied to a newly created driver

session configuration entry, the configuration utility allows the user to make the following modifications to

the driver session configuration entry at any time:

¶ Change the value of the initial setting of an attribute.

¶ Remove the IVI Data Component object for an attribute that has “Optional” as the value for the Used In

Session property.

¶ Copy an IVI Data Component object for an attribute from the software module entry if the IVI Data

Component object in the software module entry has “Optional” as the value for the Used In Session

property.

The configuration utility does not allow the user to make any other modifications to the configurable initial

settings in the driver session configuration entry.

IVI-3.17: Installation Requirements Specification 61 IVI Foundation

6. IVI Shared Component Installer Requirements

This section describes the requirements specific to the IVI shared component installer, other than the

requirements described in Section 4, IVI Directory Structure Creation and Detection Requirements .

6.1 Overview

This section describes the behavior of the IVI shared component installer that the IVI Foundation provides.

The IVI Foundation does not support installation of the IVI shared components other than through the IVI

shared component installer that it provides.

6.2 IVI Shared Component Versioning

The 32-bit IVI shared component installer and 64-bit IVI shared component installer shall always be kept at

the same version. If a version update to one installer is made, the other installer shall also be rebuilt to have

the same version.

6.3 IVI Shared Component Installation

6.3.1 IVI-COM/IVI-C Shared Component Installation

The IVI-COM/IVI-C shared component installer shall install shared component files according to the

following procedure:

1. The IVI-COM/IVI-C shared component installer checks the bitness of the Windows operating system. A

32-bit IVI-COM/IVI-C shared component installer exits with a failure condition if the operating system

is not a 32-bit operating system. A 64-bit IVI-COM/IVI-C shared component installer exits with a

failure condition if the operating system is not a 64-bit operating system.

2. The IVI-COM/IVI-C shared component installer detects and, if necessary, creates the IVI standard root

directories according to the requirements specified in Section 4.1.1, IVI-COM/IVI-C Shared Component

Installer Responsibilities.

3. The IVI-COM/IVI-C shared component installer checks for the presence and version of the IVI-

COM/IVI-C shared components as specified in 5.1.1, Detecting the Presence and Version of the IVI-

COM/IVI-C Shared Components.

4. A failure condition exists if the shared components already exist on the system and have a version greater

than the version of the shared components to be installed.

5. If the shared components do not already exist on the system, the installer installs all shared component

files to the appropriate directories in the IVI standard directory tree.

a. Refer to Section 3.1.3, First Installation, in IVI-3.5: Configuration Server Specification for

additional rules on installing the IVI Configuration Server.

b. The installer registers the IVI-COM shared components on the system.

c. For each supported operating system bitness, the installer shall install the batch file

IviPiaRegistration.bat in the <IVIStandardRootDir>\Bin\Primary Interop

Assemblies directory.

IVI Foundation 62 IVI-3.17: Installation Requirements Specification

d. If the Microsoft .NET Framework exists on the system, then for each supported operating system

bitness, the IVI shared component installer shall put the PIAs into the Global Assembly Cache and

register each PIA. Refer to Section 2.8, Legacy PIA Considerations for Shared Components, in IVI-

3.14: Primary Interop Assembly Specification, for specific files and versions to install.

6. If the shared components exist on the system, and the version to be installed is greater than that of the

shared components already on the system, the installer re-installs all the shared component files except

the master configuration store. Refer to Section 3.1.4, Subsequent Installations, in IVI-3.5:

Configuration Server Specification for additional rules on subsequent installations of the IVI

configuration server.

7. If the shared components exist on the system, and the version to be installed is equal that of the shared

components already on the system, the installer runs in “repair” mode.

8. The IVI-COM/IVI-C shared component installer upgrades a legacy IVI-COM/IVI-C shared component

installer if it exists on the system.

9. The IVI-COM/IVI-C shared component installer requires the user to accept the IVI Foundation license to

proceed; otherwise the installer will not install the software.

10. The IVI-COM/IVI-C shared component installer installs the IVI-COM/IVI-C Shared Component

Cleanup Utility and registers it with the standard Windows Control Panel facility for adding and

removing programs.

11. If necessary, the IVI-COM/IVI-C shared component installer reboots the system.

6.3.1.1 IVI-COM/IVI-C Shared Component Cleanup Utility Requirements

The shared component cleanup utility shall have two modes: partial cleanup and full cleanup.

In partial cleanup mode, the IVI-COM/IVI-C shared component cleanup utility shall perform the following

operations:

¶ Unregisters the IVI-COM shared components.

¶ Deletes the shared component files for each shared component.

¶ Removes the <IVIStandardRootDir>\Bin from the Windows system search path.

In full cleanup mode, the IVI-COM/IVI-C shared component cleanup utility shall perform the following

operations:

¶ Unregisters the IVI-COM shared components.

¶ Removes the PIAs from the Global Assembly Cache and unregisters the PIAs.

¶ Deletes the registry key and entry for MasterStore.

¶ Deletes the registry key and entry for IviStandardRootDir.

¶ Deletes the registry key and entry for IviDataDir.

¶ Removes the <IVIStandardRootDir>\Bin from the Windows system search path.

¶ Deletes the shared component files for each shared component.

¶ Deletes the following shared component data files: IviConfigurationStore.xml and IviConfiguration

Store.xsd.

¶ Deletes empty IVI standard common files directories.

¶ Deletes the IVI-COM/IVI-C shared component directory, if it is empty.

IVI-3.17: Installation Requirements Specification 63 IVI Foundation

¶ Deletes the IVI standard root directory, if it is empty.

¶ Deletes the IVI data directory, if it is empty.

¶ Unregisters the IVI-COM/IVI-C Shared Component Cleanup Utility with the standard Windows Control

Panel facility for adding and removing programs.

6.3.2 IVI.NET Shared Component Installation

An IVI.NET shared component installer shall install a shared component variant according to the following

procedure:

1. The IVI.NET shared component installer checks the bitness of the Windows operating system. A 32-bit

IVI.NET shared component installer exits with a failure condition if the operating system is not a 32-bit

operating system. A 64-bit IVI.NET shared component installer exits with a failure condition if the

operating system is not a 64-bit operating system.

2. The IVI.NET shared component installer checks for the presence of the required .NET Framework

version. A failure condition exists if the required .NET Framework version is not present. If the

IVI.NET shared component installer was invoked in dialog mode, the IVI.NET shared component

installer instructs the user to run the .NET Framework installer as a separate step before installing the

IVI.NET shared components.

3. For each supported bitness, the IVI.NET shared component installer checks for the presence and version

of the IVI-COM/IVI-C shared components as specified in Section 5.1.1, Detecting the Presence and

Version of the IVI-COM/IVI-C Shared Components. If the IVI-COM/IVI-C shared components are not

installed or not of a sufficient version, the installer exits with a failure condition. If the installer was

invoked in dialog mode, the installer informs the user that the user must first execute the IVI-COM/IVI-

C shared component installer and informs the user where to find the IVI-COM/IVI-C shared component

installer.

4. The IVI.NET shared component installer checks for the presence of the IVI.NET shared components

variant that it installs, as specified in Section 5.2.1, Detecting the Presence of an IVI.NET Shared

Components Variant. The installer takes the following actions for each bitness it supports:

a. If the IVI.NET shared components variant does not already exist on the system, the installer

installs all IVI.NET shared component files to the appropriate directories in the IVI.NET

standard directory tree and the GAC.

b. If the IVI.NET shared components variant already exists on the system, and the Full Version to

be installed is different than the Full Version of the variant on the system, the installer installs

all IVI.NET shared component files to the appropriate directories in the IVI.NET standard

directory tree and the GAC.

c. If the IVI.NET shared components variant already exists on the system, and the Full Version to

be installed is equal to the Full Version of the variant on the system, the installer shall run in

“repair” mode.

5. Publisher policy files shall have assembly version numbers and file version numbers. When publisher

policy files are installed to the GAC, they are installed in assembly version-specific directories. To

ensure every version of a publisher policy file is installed, each version of a publisher policy file shall

have a unique installer Component ID (GUID). The publisher policy files cause existing applications to

use the version being installed instead of the version with which the applications were built.

6. The IVI.NET shared component installer requires the user to accept the IVI Foundation license to

proceed; otherwise the installer will not install the software.

IVI Foundation 64 IVI-3.17: Installation Requirements Specification

7. The IVI.NET shared component installer registers with the standard Windows Control Panel facility for

adding and removing programs.

8. If necessary, the IVI.NET shared component installer reboots the system.

6.3.2.1 IVI.NET Shared Componet Uninstaller

The IVI. NET shared component uninstaller shall perform the following operations:

¶ Deletes the IVI.NET shared component files for the shared components variant from the GAC and from

the IVI.NET directory tree

¶ Removes the policy files for the shared components variant from the GAC.

¶ Removes the Windows registry keys and entries for the design time assemblies for the shared

components variant.

¶ Deletes the IVI.NET standard root directory if no files exist in the directory tree.

6.4 IVI Shared Component Installer Files

This section describes requirements for the IVI shared component installer binary (.exe and.msi) files.

6.4.1 IVI Shared Component Installer File Formats

A Windows installer can be in .msi file format or can be in the format of an .exe file that encapsulates a .msi.

Installer problems can occur when a standalone .msi file is run on a system without an encapsulating .exe file.

For this reason, the IVI-COM/IVI-C shared component installer .msi files and the IVI.NET shared

component installer .msi files shall be made available only to members of the IVI Foundation. The IVI-

COM/IVI-C shared component installer .exe file and the IVI.NET shared component installer .exe file shall

be made publicly available.

6.4.1.1 IVI Shared Component .exe Installers

There shall be IVI shared component .exe installers that run only on 32-bit operating systems and are capable

of installing only 32-bit shared components. There shall be IVI shared component .exe installers that run only

on 64-bit operating systems and are capable of installing both 32-bit and 64-bit shared components.

6.4.1.1.1 IVI-COM/IVI-C Shared Component .exe Installer File Name

The file name of the IVI-COM/IVI-C shared component .exe installer that runs only on 32-bit operating

systems shall be

IviSharedComponents_<FullVersion>.exe

The file name of the IVI-COM/IVI-C Shared Component .exe installer that runs only on 64-bit operating

systems shall be

IviSharedComponents64_<FullVersion>.exe

6.4.1.1.2 IVI.NET Shared Component .exe Installer File Name

The file name of the IVI.NET shared component .exe installer that runs only on 32-bit operating systems

shall be

IviNetSharedComponents32_<FwkVerShortName>_<FullVersion>.exe

The file name of the IVI.NET Shared Component .exe installer that runs only on 64-bit operating systems

shall be

IVI-3.17: Installation Requirements Specification 65 IVI Foundation

IviNetSharedComponents64_<FwkVerShortName>_<FullVersion>.exe

6.4.1.2 IVI Shared Component .msi Installers

6.4.1.2.1 IVI-COM/IVI-C Shared Component .msi Installer File Names

The file name of the 32-bit IVI-COM/IVI-C shared component .msi installer shall be

IviSharedComponents_<FullVersion>.msi

The file name of the 64-bit IVI-COM/IVI-C shared component .msi installer shall be

IviSharedComponents64_<FullVersion>.msi

6.4.1.2.2 IVI.NET Shared Component .msi Installer File Names

The file name of the 32-bit IVI.NET shared component .msi installer shall be

IviNetSharedComponents32_<FwkVerShortName>_<FullVersion>.msi

The file name of the 64-bit IVI.NET shared component .msi installer shall be

IviNetSharedComponents64_<FwkVerShortName>_<FullVersion>.msi

6.4.2 IVI.NET Shared Component Installer Responsibilities

When a new version of the IVI.NET shared components is created, the IVI.NET working group will

determine whether the bindingRedirect tag in all of the IVI.NET assembly .config files needs to change, and

if so, will make the appropriate changes.

If the major/minor version numbers are not changed, no new policy files are needed.

If the major/minor version numbers are changed, the build and install need to be modified. The nature of the

modifications depends on whether the new revision of the IVI.NET Shared Components is backward

compatible with the prior versions of the IVI.NET Shared Componets.

¶ If the IVI.NET Shared Components are backwards compatible with prior versions, new policy files

must be created and installed.

¶ If the IVI.NET Shared Components are not backwards compatible with prior versions, no policy

files shall be created or installed.

The IVI.NET working group will notify the build/install engineer(s) whether policy files are needed and if so,

if they are new policy files or modified versions of existing policy files.

¶ If the IVI.NET working group doesn’t notify the build/install engineer, the build/install engineer(s)

should ask.

¶ The build/install engineer(s) should notify the IVI.NET working group of any inconsistencies.

IVI Foundation 66 IVI-3.17: Installation Requirements Specification

7. Installer Interface Requirements

This section describes the requirements for how IVI installers interact with other IVI installers or calling

programs.

7.1 IVI Shared Component Installer Command Line Syntax

7.1.1 IVI-COM/IVI-C Shared Component Installer Command-Line Syntax

If the IVI-COM/IVI-C shared component installer is in the MSI file format, it shall accept a command line

argument of the following form and order:

msiexec.exe /i <pathtomsi> [IVISTANDARDROOTDIR=<path>]

[IVISTANDARDROOTDIR64=<path>] [/q]

 The Table 7-1 gives a description each command line argument:

Table 7-1. Command Line Syntax for the IVI-COM/IVI-C Shared Component Installer

Argument Description

/i Install the MSI file specified by <pathtomsi>.

<pathtomsi> The fully-specified path to the IviSharedComponents.msi file.

<path> The fully-specified path to use for the IVI standard root directory. The path

may contain embedded white space and must contain a terminating backslash.

For example, IVISTANDARDROOTDIR="C:\mydir\ivi\"

/q Silent mode install (that is, no user interface).

In dialog mode, the IVI-COM/IVI-C shared component installer shall ignore the <path> argument.

7.1.2 IVI.NET Shared Component Installer Command Line Syntax

If the IVI.NET shared component installer is in the MSI file format, it shall accept a command line argument

of the following form and order:

msiexec.exe /i <pathtomsi> [/q]

The Table 7-1 gives a description each command line argument:

Table 7-2. Command Line Syntax for the IVI.NET Shared Component Installer

Argument Description

/i Install the MSI file specified by <pathtomsi>.

<pathtomsi> The fully-specified path to the IviNetSharedComponents.msi file.

/q Silent mode install (that is, no user interface).

7.2 IVI Driver Installer Command Line Capabilities

IVI driver installers shall allow the user to perform the following actions from the command line:

IVI-3.17: Installation Requirements Specification 67 IVI Foundation

¶ Standard Directory Installation

¶ Uninstallation, if the installer contains uninstallation capability.

IVI driver installers shall allow the user to specify the following on the command line:

¶ Silent mode installation

¶ Whether to generate a log file

¶ The path to the log file

IVI Foundation 68 IVI-3.17: Installation Requirements Specification

8. Registry Requirements

8.1 IVI-COM Registry Requirements

An IVI-COM driver shall support self-registration.

An IVI-COM driver shall add the following entries to the registry when it self-registers. The strings in

angular brackets <> shall be replaced by the appropriate string for the particular IVI-COM driver being

registered. Refer to Table 8-5. Registration Entry Substitutions for descriptions and examples of the strings

found in angular brackets.

Note that when IVI-COM drivers self-register, the Windows COM registration utility (regsvr32.exe) calls

driver routines that provide registration information in a form the utility understands. However, the use that

the utility makes of the information differs according to the version and bitness of Windows.

ProgID Entries

If ATL is used to create the IVI-COM driver, the ATL wizard creates code that adds the ProgID related

entries shown in Table 8-1.

<HKCR> varies by Operating System and component bitness. Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in

the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for details.

Table 8-1. ProgID Registry Entries

Key Value

<HKCR>\<ProgID>

 (Default) REG_SZ <Friendly Name>

<HKCR>\<ProgID>\CLSID

 (Default) REG_SZ <CLSID>

<HKCR>\<V-I ProgID>

 (Default) REG_SZ <Friendly Name>

<HKCR>\<V-I ProgID>\CLSID

 (Default) REG_SZ <CLSID>

<HKCR>\<V-I ProgID>\CurVer

 (Default) REG_SZ <ProgID>

IVI-3.17: Installation Requirements Specification 69 IVI Foundation

CLSID Entries

If ATL is used to create the IVI-COM driver, the ATL wizard creates code that adds all of the CLSID related

entries with the exception of the CATID entries. The developer shall add the code for the CATID entries

manually.

<HKCR> varies by Operating System and component bitness. Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in

the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for details.

Table 8-2. CLSID Registry Entries

Key Value

<HKCR>\CLSID\<CLSID>

 (Default) REG_SZ <Friendly Name>

<HKCR>\CLSID\<CLSID>\InprocServer32

 (Default) REG_SZ <Executable File Pathname>

 ThreadingModel REG_SZ Apartment

<HKCR>\CLSID\<CLSID>\ProgID

 (Default) REG_SZ <ProgID>

<HKCR>\CLSID\<CLSID>\Programmable

 (Default) REG_SZ (value not set)

<HKCR>\CLSID\<CLSID>\TypeLib

 (Default) REG_SZ <TypeLib GUID>

<HKCR>\CLSID\<CLSID>\VersionIndependentProgID

 (Default) REG_SZ <V-I ProgID>

<HKCR>\CLSID\<CLSID>\Implemented Categories

 (Default) REG_SZ (value not set)

<HKCR>\CLSID\<CLSID>\Implemented Categories\<CATID>

 (Default) REG_SZ (value not set)

Note: Add as many CATID entries as applies to the driver.

IVI Foundation 70 IVI-3.17: Installation Requirements Specification

Type Library Entries

If ATL is used to create the IVI-COM driver, the ATL wizard creates code that adds every type library

related entry. In addition, the ATL wizard creates a set of four interface entries for each interface defined in

the type library.

<HKCR> varies by Operating System and component bitness. Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in

the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for details.

Table 8-3. Type Library Registry Entries

Key Value

<HKCR>\TYPELIB\<TypeLib GUID>

 (Default) REG_SZ (value not set)

<HKCR>\TYPELIB\<TypeLib GUID>\1.0

 (Default) REG_SZ <TypeLib HelpString>

<HKCR>\TYPELIB\<TypeLib GUID>\1.0\0

 (Default) REG_SZ (value not set)

<HKCR>\TYPELIB\<TypeLib GUID>\1.0\0\win32

 Default) REG_SZ <TypeLib File Pathname>

<HKCR>\TYPELIB\<TypeLib GUID>\1.0\Flags

 (Default) REG_SZ 0

<HKCR>\TYPELIB\<TypeLib GUID>\1.0\HelpDir

 (Default) REG_SZ <TypeLib Help File Pathname>

<HKCR>\Interface\<IID>

 (Default) REG_SZ <Interface Name>

<HKCR>\Interface\<IID>\ProxyStubCLSID

 (Default) REG_SZ <Universal Marshaller CLSID>

<HKCR>\Interface\<IID>\ProxyStubCLSID32

 (Default) REG_SZ <Universal Marshaller CLSID>

<HKCR>\Interface\<IID>\TypeLib

 (Default) REG_SZ <TypeLib GUID>

Note: Add as many CATID entries as applies to the driver.

IVI-3.17: Installation Requirements Specification 71 IVI Foundation

Category Entries

The IVI-COM class-compliant type library DLLs add the component category for the instrument classes.

Individual IVI-COM drivers do not need to add these entries.

<HKCR> varies by Operating System and component bitness. Refer to Section 0,

A vendor may optionally register older versions of design-time assemblies that are installed on the system, in

the case where multiple versions of the driver are on the system.

Determining System Directories and Registry Keys, for details.

Table 8-4. Category Registry Entries

Key Value

<HKCR>\Component Categories\<CATID>

 (Default) REG_SZ (value not set)

 409 REG_SZ <IVI Instrument Class name>

Table 8-5. Registration Entry Substitutions

Substitute Out Substitute In Example

<Program> Program name. This is not

specified by the IVI Foundation.

If there is only one driver in a

DLL, it is recommended that the

value be the same as the

Component Identifier property

that the IVI driver returns.

YB1234

<CoClass> CoClass name. This value should

be the same as the Component

Identifier property that the IVI

driver returns.

YB1234

<Version> Positive integer, starting with 1,

and increasing by one each time

a new version of the program is

released. Note that this is not

the same as version or revision

defined elsewhere in IVI-3.1 or

IVI-3.2

1

<ProgID> <Program>.<CoClass>.<Versio

n>

YB1234.YB1234.1

<V-I ProgID>

(Version-

Independent ProgID)

<Program>.<CoClass> YB1234.YB1234

IVI Foundation 72 IVI-3.17: Installation Requirements Specification

<Friendly Name> A name for the CoClass that

users will readily understand.

YB1234 IVI-COM driver

<CLSID> The CLSID for the CoClass. {7AB5F46D-84EB-44E7-A460-

699C622F4979}

<CATID> The CATID of a category

supported by the driver.

{8AB5F468-84EB-44E7-A460-

699C682F4979}

<Executable File

Pathname>
The path to the executable file

that contains the CoClass. This

value depends on the bitness of

the driver.

C:\Program

Files\IVI\Bin\YB1234.dll

<TypeLib GUID> The GUID assigned to type

library associated with the

CoClass.

{9AB5F469-84EB-44E7-A460-

699C692F4579}

<IVI Instrument

Class name>
The COM category name as

defined in the class specification

or the MSS measurements

specification.

IviScope

<TypeLib

HelpString>
The help string defined in the

type library.

YB1234 1.0 Type Library

<TypeLib File

Pathname>
The path to the file that contains

the type library. This will

typically be the same as the

<Executable File Pathname>.

This value depends on the

bitness of the type library file.

C:\Program

Files\IVI\Bin\YB1234.dll

<TypeLib Help File

Pathname>
The path to the help file that

documents the type library.

This value depends on the

bitness of the driver.

C:\Program

Files\IVI\drivers\YB\YB12

34.hlp

<Interface Name> The name of an interface

defined in the type library.

IYb1234Measure

<Universal

Marshaller CLSID>
The CLSID of the Universal

Marshaller.

8.2 IVI-C Registry Requirements

There are no registry requirements for IVI-C drivers.

IVI-3.17: Installation Requirements Specification 73 IVI Foundation

8.3 IVI.NET Registry Requirements

Refer to Section 4.2.3, Registering IVI.NET Design-Time Assemblies. There are no other registry

requirements for IVI.NET drivers.

IVI Foundation 74 IVI-3.17: Installation Requirements Specification

9. Example Scenarios and Directories

Refer to Appendix A: Example: IVI-COM/IVI-C Driver Installer Scenarios, for example scenarios of typical

IVI driver installations. Refer to Appendix B: Example: IVI.NET Driver Installer Scenarios, for example

scenarios of typical IVI.NET driver installations. Refer to Appendix C: Example: IVI-COM/IVI-C

Installation Directories, for an example system directory on which a user has installed multiple drivers.

Refer to Appendix D: Example: IVI.NET Installation Directories for an example system directory on which a

user has installed IVI.NET drivers and shared components.

IVI-3.17: Installation Requirements Specification 75 IVI Foundation

Appendix A: Example: IVI-COM/IVI-C Driver Installer Scenarios

The following examples represent typical use scenarios for IVI driver installations and IVI shared component

installations, particularly with regard to detecting the presence of the IVI shared components and previously

installed drivers.

1. Dialog mode installation of an Agilent 34401A driver developed by Agilent Technologies, where a

version of the driver does not yet exist on the system and the installer does not call the IVI shared

component installer.

a) The Agilent 34401A installer checks to see if the IVI shared components are on the system with

sufficient version. If they are present and of a sufficient version, the installation proceeds. If

not, the installer notifies the user to run the IVI shared component installer, restores the user’s

system to its previous state, and then exits without completing installation.

b) The Agilent 34401A installer checks to see if there is a conflict with another installed driver of

the same name by checking the <IVIStandardRootDir>\Bin directory for ag34401a.dll

and ag34401a_32.dll. After determining that there is not a conflict with another installed

driver, the installer proceeds.

2. Dialog mode installation of an Agilent 34401A driver developed by Agilent Technologies, where a

version of the driver does not exist on the system and the installer calls the IVI shared component

installer.

a) If the IVI standard root directory is not defined, the Agilent 34401A installer prompts the user

to specify it. If the IVI standard root directory was not defined, then the installer passes the

user-specified IVI standard root directory to the IVI shared component installer.

b) If the IVI standard root directory is already defined, the Agilent 34401A installer checks to see

if the IVI shared components are on the system. If they are present and are of a sufficient

version, the Agilent 34401A installation proceeds. If not, the installer calls the IVI shared

component installer.

c) The Agilent 34401A installer checks to see if there is a conflict with another installed driver of

the same name by checking the <IVIStandardRootDir>\Bin directory for ag34401a.dll

and ag34401a_32.dll. After determining that there is not a conflict with another installed

driver, the installer proceeds.

3. Installation of the Tektronix TDS30xx driver developed by National Instruments, following a previous

installation of a driver developed by Tektronix for the same instrument family. The Tektronix TDS30xx

driver installer developed by National Instruments does not call the IVI shared component installer.

a) The Tektronix TDS30xx installer checks to see if the IVI shared components are on the system

with sufficient version. If they are present and of a sufficient version, the Tektronix TDS30xx

installation proceeds. If not, the installer notifies the user to run the IVI shared component

installer, restores the user’s system to its previous state and then exits without completing

installation.

b) The Tektronix TDS30xx installer checks to see if an existing driver is on the system by

checking the <IVIStandardRootDir>\Bin directory for tktds30xx.dll and

tktds30xx_32.dll. After detecting the existence of the driver, the installer checks the

vendor and version of the driver DLL.

c) Since the CompanyName of the driver being installed is “National Instruments” and the

CompanyName of the existing driver is “Tektronix”, the Tektronix TDS30xx installer notifies

the user that a driver for the same instrument already exists on the system and that the user must

uninstall it before installing the new driver. The installation program restores the user’s system

to its previous state and then exits without completing installation.

4. Installation of revision 2. 0 of the Tektronix TDS30xx driver developed by National Instruments,

following an installation of revision 1.0 of the same driver. The Tektronix TDS30xx driver installer does

not call the IVI shared component installer.

IVI Foundation 76 IVI-3.17: Installation Requirements Specification

a) The Tektronix TDS30xx installer checks to see if the IVI shared components are on the system

with sufficient version. If they are present and of a sufficient version, the Tektronix TDS30xx

installation proceeds. If not, the installer notifies the user to run the IVI shared component

installer, restores the user’s system to its previous state, and then exits without completing

installation.

b) The Tektronix TDS30xx installer checks to see if an existing driver is on the system by

checking the <IVIStandardRootDir>\Bin directory for tktds30xx.dll and

tktds30xx_32.dll. After detecting the existence of the driver, the installer checks the

vendor and version of the DLL.

c) Since the CompanyName fields match, the installer proceeds to check the FileVersion fields.

Since the driver being installed is a newer version, the installation proceeds.

5. Installation of revision 2.0 of the Tektronix TDS30xx driver developed by National Instruments on a

computer with Windows 7 64-bit, following an installation of revision 1.0 of the same driver. Revision

2.0 includes both a 32-bit and a 64-bit IVI driver. Revision 1.0 included 32-bit driver support only.

a) The Tektronix TDS30xx installer checks to see if the IVI shared components are on the system

with sufficient version. If they are present and of a sufficient version, the Tektronix TDS30xx

installation proceeds. If not, the installer notifies the user to run the IVI shared component

installer, restores the user’s system to its previous state, and then exits without completing

installation.

b) The Tektronix TDS30xx installer checks to see if an existing 32-bit driver is on the system by

checking the <IVIStandardRootDir32>\Bin directory for tktds30xx.dll and

tktds30xx_32.dll. After detecting the existence of the driver, the installer checks the

vendor and version of the DLL.

c) Since the CompanyName field of the driver being installed matches the CompanyName of the

existing 32-bit driver, the installer proceeds to check the FileVersion fields. Since the driver

being installed is a newer version, the installation proceeds.

d) The Tektronix TDS30xx installer also checks to see if an existing 64-bit driver is on the system

by checking the <IVIStandardRootDir64>\Bin directory for tktds30xx_64.dll. After

determining that there is not another instance of the driver on the system, the installer proceeds.

6. Installation of revision 2.3 of the Tektronix TDS30xx driver developed by National Instruments on a

computer with Windows 7 64-bit, following an installation of revision 2.0 of the same driver. Both

revision 2.3 and revision 2.0 include a 32-bit and a 64-bit IVI driver.

a) The Tektronix TDS30xx installer checks to see if the IVI shared components are on the system

with sufficient version. If they are present and of a sufficient version, the Tektronix TDS30xx

installation proceeds. If not, the installer notifies the user to run the IVI shared component

installer, restores the user’s system to its previous state, and then exits without completing

installation.

b) The Tektronix TDS30xx installer checks to see if an existing 32-bit driver is on the system by

checking the <IVIStandardRootDir32>\Bin directory for tktds30xx.dll and

tktds30xx_32.dll. After detecting the existence of the driver, the installer checks the

vendor and version of the DLL.

c) Since the CompanyName field of the driver being installed matches the CompanyName of the

existing 32-bit driver, the installer proceeds to check the FileVersion fields. Since the driver

being installed is a newer version, the installation proceeds.

d) The Tektronix TDS30xx installer also checks to see if an existing 64-bit driver is on the system

by checking the <IVIStandardRootDir64>\Bin directory for tktds30xx_64.dll. After

determining that there is not another instance of the driver on the system, the installer proceeds.

e) Since the CompanyName field of the driver being installed matches the CompanyName of the

existing 64-bit driver, the installer proceeds to check the FileVersion fields. Since the driver

being installed is a newer version, the installation proceeds.

IVI-3.17: Installation Requirements Specification 77 IVI Foundation

7. Installation of revision 2.3 of the Tektronix TDS30xx driver developed by National Instruments on a

computer with Windows 7 64-bit, following an installation of another instance of the driver on the same

system from a different vendor. Revision 2.3 includes only a 64-bit IVI driver. The previously installed

driver included only a 32-bit IVI driver.

a) The Tektronix TDS30xx installer checks to see if the IVI shared components are on the system

with sufficient version. If they are present and of a sufficient version, the Tektronix TDS30xx

installation proceeds. If not, the installer notifies the user to run the IVI shared component

installer, restores the user’s system to its previous state, and then exits without completing

installation.

b) The Tektronix TDS30xx installer checks to see if an existing 32-bit driver is on the system by

checking the <IVIStandardRootDir32>\Bin directory for tktds30xx.dll and

tktds30xx_32.dll. After detecting the existence of the driver, the installer checks the

vendor and version of the DLL.

c) Since the CompanyName of the 64-bit driver being installed is “National Instruments” and the

CompanyName of the existing 32-bit driver is a different vendor, the Tektronix TDS30xx

installer notifies the user that a driver for the same instrument already exists on the system and

that the user must uninstall it before installing the new driver. The installation program restores

the user’s system to its previous state and then exits without completing installation.

8. Installation of revision 2. 3 of the Tektronix TDS30xx driver developed by National Instruments on a

computer with Windows 7 64-bit, following an installation of revision 2.0 of the same driver. Revision

2.3 includes only a 64-bit IVI driver. Revision 2.0 included only a 32-bit IVI driver.

a) The Tektronix TDS30xx installer checks to see if the IVI shared components are on the system

with sufficient version. If they are present and of a sufficient version, the Tektronix TDS30xx

installation proceeds. If not, the installer notifies the user to run the IVI shared component

installer, restores the user’s system to its previous state, and then exits without completing

installation.

b) The Tektronix TDS30xx installer checks to see if an existing 32-bit driver is on the system by

checking the <IVIStandardRootDir32>\Bin directory for tktds30xx.dll and

tktds30xx_32.dll. After detecting the existence of the driver, the installer checks the

vendor and version of the DLL.

c) Since the CompanyName field of the driver being installed matches the CompanyName of the

existing 32-bit driver, the installer proceeds to check the FileVersion fields. Since the driver

being installed is a newer version, the installation proceeds. (Note: If the revision number of the

64-bit driver being installed were older than the revision number of the existing 32-bit driver,

the installer would report an error and exit.)

d) The Tektronix TDS30xx installer also checks to see if an existing 64-bit driver is on the system

by checking the <IVIStandardRootDir64>\Bin directory for tktds30xx_64.dll. After

determining that there is not another instance of the driver on the system, the installer proceeds.

e) The installer uninstalls the 32-bit driver and installs the 64-bit driver. Alternatively, the driver

installer may notify the user that a previous version of the driver is installed and must be

removed before installing the newer version.

IVI Foundation 78 IVI-3.17: Installation Requirements Specification

Appendix B: Example: IVI.NET Driver Installer Scenarios

The following examples represent typical use scenarios for IVI.NET driver installations and IVI.NET shared

component installations, particularly with regard to detecting the presence of the IVI.NET shared

components.

1. Dialog mode installation of an Agilent 34401A driver developed by Agilent Technologies, where the

installer does not call the IVI.NET shared component installer.

a) The Agilent 34401A installer checks to see if the required version of the IVI.NET shared

components are on the system. If the version exists, the installation proceeds. If not, the

installer notifies the user to run the IVI.NET shared component installer, restores the user’s

system to its previous state, and then exits without completing installation.

2. Dialog mode installation of an Agilent 34401A driver developed by Agilent Technologies, where the

installer calls the IVI.NET shared component installer.

a) The Agilent 34401A installer checks to see if the required version of the IVI.NET shared

components are on the system. If the version exists, the installation proceeds. If not, the

installer calls the IVI.NET shared component installer.

b) The IVI.NET shared component installer checks to see if the required version of the IVI-

COM/IVI-C shared components are on the system. If the version exists, the installation

proceeds. If not, the installer informs the user that the user must first execute the IVI-COM/IVI-

C shared component installer and informs the user where to find the IVI-COM/IVI-C shared

component installer.

3. Installation of version 1.0.1 of the Tektronix TDS30xx driver developed by National Instruments

following an installation of version 1.0.0 of the same driver.

a) The Tektronix TDS30xx installer installs version 1.0.1 of the driver.

a. The installer installs the version 1.0.1 design-time assemblies side-by-side with version

1.0.0 into the Component Version-Specific Directory for version 1.0.1.

b. The installer installs the version 1.0.1 run-time assemblies into the GAC.

c. The installer installs policy files to the GAC to redirect references to version 1.0.1

instead of version 1.0.0.

4. Installation of version 2.0.0 of the Tektronix TDS30xx driver developed by National Instruments,

following an installation of version 1.0.0 of the same driver.

a) The Tektronix TDS30xx installer installs version 2.0.0 side-by-side with version 1.0.0.

IVI-3.17: Installation Requirements Specification 79 IVI Foundation

Appendix C: Example: IVI-COM/IVI-C Installation Directories

The following are example systems on which the user has installed an IVI driver.

Table C-1. Installation of a Fluke 45 IVI-C driver on 32-bit Windows

Directory Files Comments

C:\ProgramData\ IVI

Foundation\IVI IviConfigurationStore.xml IVI data directory

 IviConfigurationStore.xsd

C:\Program Files\ IVI

Foundation\IVI IVI Standard root directory

 \Drivers

 \fl45 Source files (.c, .fp, .sub)

 Documentation (compliance doc, help doc)

 Examples

 \Bin fl45_32.dll 32-bit DLLs

 IviFloat.dll

 IviCShared.dll

Other shared component dlls (e.g.,

IviFgenTypeLib.dll, IviConfigServerCAPI.dll)

 \Primary Interop

 Assemblies

.NET PIAs and corresponding XML IntelliSense help

for IVI-COM shared component dlls (e.g.,

Ivi.Fgen.Interop.dll & Ivi.Fgen.Interop.xml)

32-bit PIA’s

 \Include fl45.h

 IviFloat.h

 IviCShared.h

Other shared component include files (e.g.,

IviConfigServer.h)

 \Lib

 \msc fl45.lib

Microsoft-compatible 32-bit DLL

import libraries

 IviFloat.lib

 IviCShared.lib

Other shared component import library files (e.g.,

IviConfigServer.lib)

 \Lib_x64

 \msc fl45.lib

Microsoft-compatible 64-bit DLL

import libraries

 IviFloat.lib

IVI Foundation 80 IVI-3.17: Installation Requirements Specification

 IviCShared.lib

Other shared component import library files (e.g.,

IviConfigServer.lib)

Table C-2. Installation of a 32-bit and 64-bit Fluke 45 IVI-C driver on 64-bit Windows

Directory Files Comments

C:\ProgramData\ IVI

Foundation\IVI IviConfigurationStore.xml IVI data directory

 IviConfigurationStore.xsd

C:\Program Files\ IVI

Foundation\IVI

64-bit IVI standard root

directory

 \Drivers

 \fl45 Source files (.c, .fp, .sub)

 Documentation (compliance doc, help doc)

 Examples

 \Bin fl45_64.dll 64-bit DLLs

 IviFloat_64.dll

 IviCShared_64.dll

Other shared component dlls (e.g., IviFgenTypeLib.dll,

IviConfigServerCAPI.dll)

 \Primary Interop

 Assemblies

.NET PIAs and corresponding XML IntelliSense help for

IVI-COM shared component dlls (e.g.,

Ivi.Fgen.Interop.dll & Ivi.Fgen.Interop.xml)

64-bit PIAs

 \Include fl45.h

 IviFloat.h

 IviCShared.h

Other shared component include files (e.g.,

IviConfigServer.h)

 \Lib_x64

 \msc fl45.lib

Microsoft-compatible 64-bit DLL

import libraries

 IviFloat.lib

 IviCShared.lib

Other shared component import library files (e.g.,

IviConfigServer.lib)

C:\Program Files (x86)\ IVI

Foundation\IVI

32-bit IVI standard root

directory

 \Drivers

 \fl45 Source files (.c, .fp, .sub)

IVI-3.17: Installation Requirements Specification 81 IVI Foundation

 Documentation (compliance doc, help doc)

 Examples

 \Bin fl45.dll 32-bit DLLs

 IviFloat.dll

 IviCShared.dll

Other shared component dlls (e.g., IviFgenTypeLib.dll,

IviConfigServerCAPI.dll)

 \Include fl45.h

 IviFloat.h

 IviCShared.h

Other shared component include files (e.g.,

IviConfigServer.h)

 \Lib

 \msc fl45.lib

Microsoft-compatible 32-bit DLL

import libraries

 IviFloat.lib

 IviCShared.lib

Other shared component import library files (e.g.,

IviConfigServer.lib)

 \Lib_x64

 \msc fl45.lib

Microsoft-compatible 64-bit DLL

import libraries

 IviFloat.lib

 IviCShared.lib

 Other shared component import library files (e.g.,

IviConfigServer.lib)

Table C-3. Installation of a 32-bit Rohde & Schwarz RsFs IVI-COM driver on 32-bit Windows

Directory Files Comments

C:\ProgramData\ IVI

Foundation\IVI

IviConfigurationStore.xml IVI data directory

 IviConfigurationStore.xsd

C:\Program Files\ IVI

Foundation\IVI

 32-bit IVI standard root

directory

 \Drivers

 \RsFs Source files, documentation, examples Driver specific files may be

organized in subdirectories

 Compliance Document

IVI Foundation 82 IVI-3.17: Installation Requirements Specification

 Readme

 RsFs.chi

 RsFs.chm

 \Bin RsFs.dll 32-bit DLLs

 Other shared component dlls (e.g., IviFgenTypeLib.dll,

IviConfigServerCAPI.dll)

 \Primary Interop

 Assemblies

.NET PIAs and corresponding XML IntelliSense help for

IVI-COM shared component dlls (e.g.,

Ivi.Fgen.Interop.dll & Ivi.Fgen.Interop.xml)

32-bit PIAs

 Rs.RsFs.Interop.dll

 Rs.RsFs.Interop.xml

 \Include Shared component include files (e.g., IviConfigServer.h)

 RsFs.h

 RsFs_i.c

 \Lib

 \msc 32-bit shared component import library files (e.g.,

IviConfigServer.lib)

IVI-COM drivers do not normally

have .lib files.

 \bc

 \Lib_x64 64-bit shared component import library files (e.g.,

IviConfigServer.lib)

 \msc

IVI-3.17: Installation Requirements Specification 83 IVI Foundation

Table C-4. Installation of a 32-bit and 64-bit AgSAn IVI-COM driver with IVI-C Wrapper on 64-bit Windows

Directory Files Comments

C:\ProgramData\ IVI

Foundation\IVI

IviConfigurationStore.xml IVI data directory

 IviConfigurationStore.xsd

C:\Program Files\ IVI

Foundation\IVI

 64-bit IVI standard root

directory

 \Drivers

 \AgSAn Source files, documentation, examples Driver specific files may be

organized in subdirectories

 AgilentSAn.chi

 AgilentSAn.chm

 Additional MS help files such as AgilentSAn.HxS Help files required for Visual

Studio help integration

 AgSAn.fp C Wrapper function panel

 AgSAn.sub C Wrapper .sub file

 \Bin Other shared component dlls (e.g., IviFgenTypeLib.dll,

IviConfigServerCAPI.dll)

64-bit DLLs

 AgSAn_64.dll Contains IVI-COM driver and C

wrapper.

 AgilentSAnBasic_64.dll Driver specific support library

 ItlTypeLib_64.dll Vendor specific support library

 \Primary Interop

 Assemblies

.NET PIAs and corresponding XML IntelliSense help for

IVI-COM shared component dlls (e.g.,

Ivi.Fgen.Interop.dll & Ivi.Fgen.Interop.xml)

64-bit PIAs

 Agilent.AgilentSAn.Interop.dll PIA for primary driver DLL

 Agilent.AgilentSAn.Interop.xml PIA IntelliSense File

 Agilent.AgilentSAn.Basic.Interop.dll PIA for support DLL

 Agilent.AgilentSAn.Basic.Interop.xml PIA IntelliSense File

 \Include Shared component include files (e.g., IviConfigServer.h)

 AgSAn.h

 \Lib_64 64-bit DLL import libraries

 \msc Shared component import library files (e.g.,

IviConfigServer.lib)

Microsoft-compatible

 AgSAn_64.lib IVI-COM drivers with C

wrappers will have .lib files for

the C wrapper

C:\Program Files (x86)\ IVI

Foundation\IVI

 32-bit IVI standard root

directory

IVI Foundation 84 IVI-3.17: Installation Requirements Specification

 \Drivers

 \AgSAn Source files, documentation, examples Driver specific files may be

organized in subdirectories

 AgilentSAn.chi

 AgilentSAn.chm

 Additional MS help files such as AgilentSAn.HxS Help files required for Visual

Studio help integration

 AgSAn.fp C Wrapper function panel

 AgSAn.sub C Wrapper .sub file

 \Bin Other shared component dlls (e.g., IviFgenTypeLib.dll,

IviConfigServerCAPI.dll)

32-bit DLLs

 AgSAn.dll Contains IVI-COM driver and C

wrapper.

 AgilentSAnBasic.dll Driver specific support library

 ItlTypeLib.dll Vendor specific support library

 \Primary Interop

 Assemblies

.NET PIAs and corresponding XML IntelliSense help for

IVI-COM shared component dlls (e.g.,

Ivi.Fgen.Interop.dll & Ivi.Fgen.Interop.xml)

32-bit PIAs

 Agilent.AgilentSAn.Interop.dll PIA for primary driver DLL

 Agilent.AgilentSAn.Interop.xml PIA IntelliSense File

 Agilent.AgilentSAn.Basic.Interop.dll PIA for support DLL

 Agilent.AgilentSAn.Basic.Interop.xml PIA IntelliSense File

IVI-3.17: Installation Requirements Specification 85 IVI Foundation

Table C-5. Installation of a 32-bit and 64-bit AgSAn IVI-COM driver with IVI-C Wrapper on 64-bit Windows (Continued)

Directory Files Comments

C:\Program Files (x86)\ IVI

Foundation\IVI

 32-bit IVI standard root

directory

 \Include Other shared component include files (e.g.,

IviConfigServer.h)

C Wrapper header file

 AgSAn.h

 \Lib 32-bit DLL import libraries

 \msc Other shared component import library files (e.g.,

IviConfigServer.lib)

Microsoft-compatible

 AgSAn.lib IVI-COM drivers with C

wrappers have .lib files for the C

wrapper

 \Lib_x64 64-bit DLL import libraries

 \msc Other shared component import library files (e.g.,

IviConfigServer.lib)

Microsoft-compatible

 AgSAn_64.lib IVI-COM drivers with C

wrappers have .lib files for the C

wrapper

IVI Foundation 86 IVI-3.17: Installation Requirements Specification

Appendix D: Example: IVI.NET Installation Directories

The following are example systems on which the user has installed an IVI.NET driver.

Table D-1. Installation of a 32-bit AgilentSAn IVI.NET driver on 32-bit Windows

Directory Files Comments

C:\ProgramData\ IVI Foundation\IVI IviConfigurationStore.xml IVI data directory

 IviConfigurationStore.xsd

C:\Program Files\ IVI Foundation\IVI 32-bit IVI standard root directory

 \Drivers

 \Bin

 \Components

 \Microsoft.NET

 \Framework32

 \v2.0.50727

 \Agilent.AgSAn 1.0.0 Assemblies, documentation, examples Driver specific files may be

organized in subdirectories

 Agilent.AgilentSAn.chi Documentation file

 Agilent.AgilentSAn.chm Documentation file

 Agilent.AgilentSAn.dll Primary driver assembly (32-bit or

Any CPU)

 Agilent.AgilentSAn.xml IntelliSense file

 Agilent.AgilentSAn.Basic.dll Support assembly (32-bit or Any

CPU)

 Agilent.AgilentSAn.Basic.xml IntelliSense file

 Agilent.AgSAnVersion.dll Version identification file

όǳƴŘŜǊ Χ\ v2.0.50727)

\IVIFoundationSharedComponents

1.1.0

Assemblies, documentation

 Ivi.Driver.dll Assembly (32-bit or Any CPU)

 Ivi.Driver.xml IntelliSense file

 Other shared component files (e.g., *.dll, *.xml)

 IviFoundationSharedComponentsVersion.dll Version identification file

 \v3.0

 \v3.5

 \Include

 \Lib

 \Lib_64

IVI-3.17: Installation Requirements Specification 87 IVI Foundation

Table D-2. Installation of a 32-bit and 64-bit AgilentSAn IVI.NET driver on 64-bit Windows

Directory Files Comments

C:\ProgramData\ IVI Foundation\IVI IviConfigurationStore.xml IVI data directory

 IviConfigurationStore.xsd

C:\Program Files (x86)\ IVI

Foundation\IVI

 32-bit IVI

standard root

directory

 \Drivers

 \Bin

 \Components

 \Microsoft.NET

 \Framework32

 \v2.0.50727

 \Agilent.AgSAn 1.0.0 Assemblies, documentation, examples Driver specific

files may be

organized in

subdirectories

 Agilent.AgilentSAn.chi Documentation

file

 Agilent.AgilentSAn.chm Documentation

file

 Agilent.AgilentSAn.dll Primary driver

assembly (32-bit

or Any CPU)

 Agilent.AgilentSAn.xml IntelliSense file

 Agilent.AgilentSAn.Basic.dll Support assembly

(32-bit or Any

CPU)

 Agilent.AgilentSAn.Basic.xml IntelliSense file

 Agilent.AgSAnVersion.dll Version

identification file

όǳƴŘŜǊ Χ\ v2.0.50727)

\IVIFoundationSharedComponents

1.1.0

Assemblies, documentation

 Ivi.Driver.dll Assembly (32-bit

or Any CPU)

 Ivi.Driver.xml IntelliSense file

 Other shared component files (e.g., *.dll, *.xml)

 IviFoundationSharedComponentsVersion.dll Version

identification file

IVI Foundation 88 IVI-3.17: Installation Requirements Specification

 \v3.0

 \v3.5

 \Include

 \Lib

 \Lib_64

C:\Program Files\ IVI Foundation\IVI 64-bit IVI

standard root

directory

 \Drivers

 \Bin

 \Components

 \Microsoft.NET

 \Framework64

 \v2.0.50727

 \ Agilent.AgSAn 1.0.0 Assemblies, documentation, examples Driver specific

files may be

organized in

subdirectories

 Agilent.AgilentSAn.chi Documentation

file

 Agilent.AgilentSAn.chm Documentation

file

 Agilent.AgilentSAn.dll Primary driver

assembly (64-bit

or Any CPU)

 Agilent.AgilentSAn.xml IntelliSense file

 Agilent.AgilentSAn.Basic.dll Support assembly

(64-bit or Any

CPU)

 Agilent.AgilentSAn.Basic.xml IntelliSense file

 Agilent.AgSAnVersion.dll Version

identification file

όǳƴŘŜǊ Χ\ v2.0.50727)

\IVIFoundationSharedComponents

1.1.0

Assemblies, documentation

 Ivi.Driver.dll Assembly (64-bit

or Any CPU)

 Ivi.Driver.xml IntelliSense file

 Other shared component files (e.g., *.dll, *.xml)

 IviFoundationSharedComponentsVersion.dll Version

identification file

IVI-3.17: Installation Requirements Specification 89 IVI Foundation

 \v3.0

 \v3.5

 \Include

 \Lib

 \Lib_64

